Responsive image
博碩士論文 etd-0707112-050543 詳細資訊
Title page for etd-0707112-050543
論文名稱
Title
一次性植入式脊髓電刺激系統之設計與實現
Design and Implementation of One-time Implantable Spinal Cord Stimulation System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-19
繳交日期
Date of Submission
2012-07-07
關鍵字
Keywords
脊髓電刺激、振幅鍵移調變、植入式、直接數位頻率合成器、積體電路、輸出入緩衝器
spinal cord stimulation, implantable, VLSI, ASK, DDFS, I/O buffer
統計
Statistics
本論文已被瀏覽 5735 次,被下載 0
The thesis/dissertation has been browsed 5735 times, has been downloaded 0 times.
中文摘要
本論文提出一個一次性植入式脊髓電刺激系統雛型,本系統運用單一線圈組以電磁感應方式達到無線功率傳輸與雙向資訊傳輸技術之功能。為了延長本植入式脊髓電刺激裝置於人體內之運作時間,以減少傳統植入式裝置因電池耗盡的置換手術次數,本研究運用無線感應充電技術將過剩之能量儲存於鋰電池中。另外,本研究藉由積體電路技術開發一控制晶片,並與晶片外之離散元件組成電路整合至同一印刷電路板上,使植入式裝置體積與目前市售之脊髓電刺激器得以競爭。在功率消耗部分,本控制晶片採雙電壓源架構,以延長鋰電池之使用時間。

本脊髓電刺激系統採用振幅鍵移調變技術進行資料調變與能量傳遞,為了達到較佳之能量傳輸效率,因此對於調變震盪頻率精準度需求較高。為此,本研究開發過程中,因為系統需求而提出一無唯讀記憶體之直接數位頻率合成器以提供高精度之頻率輸出。

考量在印刷電路板上採用之離散元件包含其他市售晶片,在供應電壓方面往往不一致,這會造成不同之輸出入電壓準位,迫使所開發之晶片需要重新設計以符合晶片外部不同電路間之電壓需求,或是在晶片與晶片外部電路之間加上電壓準位轉換器,因此造成大量的面積與成本浪費。為此,本研究提出一具有多重電壓相容之輸出入緩衝器,以單一緩衝器來解決不同電路間之電壓共容問題。
Abstract
A prototype of a one-time implantable spinal cord stimulation (SCS) system is presented in this thesis. A pair of inductive coils is used to achieve wireless power transmission and bidirectional communication. A rechargeable Li-ion battery is used to extend the lifetime of the implanted SCS device. Therefore, the number of the battery replacement surgery could be reduced such that one-time implantation is feasible. Besides, the proposed system on chip (SOC) controller and many discretes are integrated on a printed circuit board (PCB). The size of the proposed SCS device is competitive compared to the currently commercial products. The proposed SOC controller adopts a dual supply voltage scheme to reduce power consumption.

The proposed SCS system employs an amplitude-shift keying (ASK) technique to carry out the data modulation and power transmission. One of the critical factors to affect efficiency of ASK-based wireless power transmission is the oscillating frequency accuracy. A ROM-less direct digital frequency synthesizer (DDFS) is presented in this thesis to fulfill such a high accuracy demand.

Since the supply voltages of the discretes are diversified on a system PCB, many level converters are needed to translate different signal output voltage levels. To resolve above problem, the chip, then, must be redesigned to meet the various voltage level requirement, or added level convertors among the SOC and the discretes. Obviously, it will cause a lot of cost. A wide-range I/O buffer, thus, is proposed to resolve the compatibility problem caused by different supply voltages of discretes.
目次 Table of Contents
論文審定書i
誌謝iii
中文摘要iv
Abstract v
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Gate Control Theory . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Spinal Cord Stimulation . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Direct Digital Frequency Synthesizer . . . . . . . . . . . . . . 10
1.2.4 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 2 One-time Implantable Spinal Cord Stimulation System 20
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Architecture of the Proposed SCS System . . . . . . . . . . . . . . . . 21
2.2.1 External Module . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Internal Module . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . 38
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Chapter 3 ROM-less DDFS Using Parabolic Polynomial Interpolation Method 48
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Parabolic Polynomial Interpolation Methods . . . . . . . . . . . . . . 49
3.3 Architecture of the Proposed ROM-less DDFS . . . . . . . . . . . . . 50
3.3.1 Parabolic Polynomial Interpolation . . . . . . . . . . . . . . . 50
3.3.2 Iterative Derivation of Offsets . . . . . . . . . . . . . . . . . . 51
3.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . 55
3.4 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . 57
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Chapter 4 A 1/2 x VDD to 3 x VDD Bidirectional I/O Buffer With A Dynamic Gate Bias Generator 62
4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 1/2 x VDD to 3 x VDD Bidirectional I/O Buffer . . . . . . . . . . . . . . 63
4.2.1 Pre-driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 High voltage detector . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Dynamic gate bias generator . . . . . . . . . . . . . . . . . . . 67
4.2.4 PAD voltage detector . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.5 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.6 Floating N-well circuit . . . . . . . . . . . . . . . . . . . . . . 78
4.2.7 Gate-tracking circuit . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.8 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . 81
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Chapter 5 Conclusion and Future Works 91
5.1 Conclusion and Contribution . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Bibliography 94
參考文獻 References
[1] T.-J. Schwedt, D.-W. Dodick, J. Hentz, T.-L. Trentman, and R.-S. Zimmerman, “Occipital nerve stimulation for chronic headachelong-term safety and efficacy,” Cephalalgia, vol. 27, no. 2, pp. 153-157, Feb. 2007.
[2] T. Cameron, “Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review,” J. Neurosurg.: Spine, vol. 100, no. 3, pp. 254-267, Mar. 2004.
[3] C. Freudenrich, Networks, [Online]. Available: http://science.howstuffworks.com/environmental/life/human-biology/pain4.htm
[4] R. Melzack and P.-D. Wall, “Pain Mechanisms: A New Theory,” Science, vol. 150, no. 699, pp. 971-979, Nov. 1965.
[5] R.-B. North, “Neural interface devices: Spinal cord stimulation technology,” Proc. IEEE, vol. 96, no. 7, pp. 1108-1119, Jul. 2008.
[6] K. Bradley, “The technology: The anatomy of a spinal cord and nerve root stimulator: The lead and the power source,” Pain Med., vol. 7, no. s1, pp. S27-S34, May 2006.
[7] M.-A. Moffitt, D.-C. Lee, and K. Bradley, “Spinal cord stimulation: Engineering approaches to clinical and physiological challenges.,” Implantable Neural Prostheses 1: Devices and Applications, pp. 155-194, Jun. 2009.
[8] G. Van Andrews, J.-B. Delaney, M.-A. Vernon, M.-P. Harris, C.-T. M. Chang, T.-C. Eiland, C.-E. Hastings, V.-I. DiPerna, M.-C. Brown, and W.-A. White, “Recent progress in wideband monolithic direct digital synthesizers,” in 1996 IEEE MTT-S Int. Microwave Symp. Dig. , vol. 3, pp. 1347-1350, Jun. 1996.
[9] M.-J. Flanagan and G.-A. Zimmerman, “Spur-reduced digital sinusoid synthesis,” IEEE Trans. Commun., vol. 43, no. 7, pp. 2254-2262, Jul. 1995.
[10] V.-F. Kroupa, V. Cizek, J. Stursa, and H. Svandova, “Spurious signals in direct digital frequency synthesizers due to the phase truncation,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 47, no. 5, pp. 1166-1172, Sep. 2000.
[11] G.-W. Kent and N.-H. Sheng, “A high purity, high speed direct digital synthesizer,” in Proc. 49th IEEE Int. Frequency Control Symp., pp. 207-211, Jun. 1995.
[12] R. Larson and S.-L. Lu, “Interpolation-based digital quadrature frequency synthesizer,” in Proc. 13th Annu. IEEE Int. ASIC/SOC Conf., pp. 48-52, Sep. 2000.
[13] A.-M. Sodagar and G.-R. Lahiji, “A pipelined ROM-less architecture for sine-output direct digital frequency synthesizers using the second-order parabolic approximation,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 48, no. 9, pp. 850-857, Sep. 2001.
[14] K.-I. Palomaki and J. Niittylahti, “Direct digital frequency synthesizer architecture based on Chebyshev approximation,” in Proc. 34th Asilomar Conf. Signals, Systems and Computers, vol. 2, pp. 1639-1643, Nov. 2000.
[15] C.-N. Shealy, J.-T. Mortimer, and J.-B. Reswick, “Electrical inhibition of pain by stimulation of the dorsal columns, preliminary clinical report,” Anesthes. Analges., Curr. Res., vol. 46, no. 4, pp. 489-491, Jul.-Aug. 1967.
[16] K. Shimoji, H. Higashi, T. Kano, S. Asai, and T. Morioka, “Electrical management of intractable pain,” Masui., vol. 20, no. 5, pp. 444-447, May 1971.
[17] J.-P. Hunter and P. Ashby, “Segmental effects of epidural spinal cord stimulation in humans,” J. Physiol., vol. 474, no. 3, pp. 407-419, Feb. 1994.
[18] M. Murg, H. Binder, and M. R. Dimitrijevic, “Epidural electric stimulation of posterior structures of the human lumbar spinal cord: 1. Muscle twitches-A functional method to define the site of stimulation,” Spinal Cord, vol. 38, no. 7, pp. 394-402, Jul. 2000.
[19] C.-K. Liang, G.-S. Yang, J.-J. J. Chen, and C.-K. Chen, “A microcontroller-based implantable neuromuscular stimulation system with wireless power and data transmission for animal experiments,” J. Chin. Inst. Eng., vol. 26, no. 4, pp. 493-501, Jul. 2003.
[20] G. Gudnason, J.-H. Nielsen, E. Bruun, and M. Haugland, “A distributed transducer system for functional electrical stimulation,” in Proc. 8th Int. Conf. IEEE Electronics Circuits and Systems, vol. 1, pp. 397-400, Sept. 2001.
[21] C.-K. Liang, J.-J. J. Chen, C.-L. Chung, C.-L. Cheng, and C.-C. Wang, “An implantable bi-directional wireless transmission system for transcutaneous biological signal recording,” Physiol. Meas., vol. 26, no. 1, pp. 83-97, Feb. 2005.
[22] T.-S. Meloy and J. Martin, “Spinal cord stimulation,” U.S. Patent No. 6,169,924, Jan. 2, 2001.
[23] C.-C. Wang, C.-H. Hsu, S.-B. Tseng, and D. Shmilovitz, “A one-time implantable wireless power bidirectional transmission spinal cord stimulation system,” in Proc. 2010 Int. Symp. on VLSI Design Auto. and Test, pp. 288-291, Apr. 2010.
[24] B. Meyerson and B. Linderoth, “Spinal cord stimulation” in Loeser JD(ed) Bonica’s Management of Pain, 3rd ed., Lippincott Williams & Wilkins, Philadephia, 2000.
[25] B.-A. Meyerson, B. Linderoth, “Mode of action of spinal cord simulation in neuropathic pain,” J. Pain Symptom Manage., vol. 31, no. 4S, pp. S6-S12, Apr. 2006.
[26] E. Buchser, A. Durrer, and E. Albrecht, “Spinal cord stimulation for the management of refractory angina pectoris,” J. Pain Symptom Manage., vol. 31, no. 4S, pp. S36-S42, Apr. 2006.
[27] D.-T. Ubbink and H. Vermeulen, “Spinal cord stimulation for critical leg ischemia: a review of effectiveness and optimal patient selection,” J. Pain Symptom Manage., vol. 31, no. 4S, pp. S30-S35, Apr. 2006.
[28] J.-P. Van Buyten, “Neurostimulation for chronic neuropathic back pain in failed back surgery syndrome,” J. Pain Symptom Manage., vol. 31, no. 4S, pp. S25-S29, Apr. 2006.
[29] M.-E. Kounavis and F.-L. Berry, “Novel table lookup-based algorithms for high-performance CRC generation,” IEEE Trans. Comput., vol. 57, no. 11, pp. 1550-1560, May 2008.
[30] Medtronic, Inc., Networks, [Online]. Available: http://www.medtronic.com
[31] Boston Scientific Co., Networks, [Online]. Available: http://www.bostonscientific.com/home.bsci
[32] St. Jude Medical, Inc., Networks, [Online]. Available: http://www.sjm.com/
[33] Texas Instruments, Inc., Networks, [Online]. Available: http://www.alldatasheet.com/datasheet-pdf/pdf/94247/TI/BQ25010.html
[34] Y.-T. Lin, T. Wang, S.-S. Lu, and G.-W. Huang, “A 0.5 V 3.1 mW fully monolithic OOK receiver for wireless local area sensor network,” IEEE Int. Asian Solid-State Cir. Conf., pp. 373-376, Nov. 2005.
[35] C.-H. Chen, R.-Z. Hwang, L.-S. Huang S. Lin, H.-C. Chen, Y.-C. Yang, Y.-T. Lin, S.-A. Yu, Y.-H. Wang, N.-K. Chou, and S.-S. Lu, “A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics,” IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 462-470, Feb. 2009.
[36] C.-C. Wang, T.-J. Lee, Y.-T. Hsiao, U.-F. Chio, C.-C. Huang, J.-J. J. Chin, and Y.-H. Hsueh, “A multiparameter implantable microstimulator SOC,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 12, pp. 1399-1402, Dec. 2005.
[37] R.-J. Baker, “Special Purpose CMOS Circuits,” in CMOS: Circuit Design, Layout, and Simulation, 2nd ed., New York: Wiley, 2005, pp. 521-529.
[38] Mayfield, Networks, [Online]. Available: http://www.mayfieldclinic.com/PE-STIM.htm
[39] C.-C. Wang, C.-L. Chen, R.-C. Kuo, and D. Shmilovitz, “Self-sampled all-MOS ASK demodulator for Lower ISM band applications,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 57, no. 4, pp. 265-269, Apr. 2010.
[40] S. Dosho, N. Yanagisawa, and M. Toyama, “A design of compact PLL with adaptive active loop filter circuit,” IEICE Trans. Electron., vol. E87-C, no. 6, pp. 949-955, 2004.
[41] S. Dosho, N. Yanagisawa, K. Sogawa, Y. Yamada, and T. Morie, “An ultra-wide range digitally adaptive control phase locked loop with new 3-phase switched capacitor loop filter,” IEICE Trans. Electron., vol. 106, no. 206, pp. 93-98, 2007.
[42] M. Kesoulis, D. Soudris, C. Koukourlis, and A. Thanailakis, “Systematic methodology for designing low power direct digital frequency synthesizers,” IET Circ. Devices Syst., vol. 1, no. 4, pp. 293-304, Aug. 2007.
[43] A. Ashrafi and R. Adhami, “A direct digital frequency synthesizer utilizing quasi-linear interpolation method,” in Proc. 37th IEEE Southeastern Symp. on Syst. Theory, pp. 144-148, Mar. 2005.
[44] A. Ashrafi and R. Adhami, “An optimized direct digital frequency synthesizer based on even fourth order polynomial interpolation,” in Proc. 38th IEEE Southeastern Symp. on Syst. Theory, pp. 109-113, Mar. 2006.
[45] H. Jafari, A. Ayatollahi, and S. Mirzakuchaki, “A low power, high SFDR, ROM-less direct digital frequency synthesize,” in Proc. 2005 IEEE Conf. on Electron Devices and Solid-State Circuits, pp. 50-54, Dec. 2005.
[46] D. De Caro and A.-G.-M. Strollo, “High-performance direct digital frequency synthesizers in 0.25 m CMOS using dual-slope approximation,” IEEE J. Solid-State Circuit, vol. 40, no. 11, pp. 2220-2227, Nov. 2005.
[47] Y. Song and B. Kim, “A 250 MHz direct digital frequency synthesizer with delta-sigma noise shaping,” in Proc. 2003 IEEE Int. Solid-State Circuits Conf. vol. 1, pp. 472-509, Jan. 2003.
[48] H.-T. Nicholas and H. Samueli, “An analysis of the output spectrum of direct digital frequency synthesizers in the presence of phase–accumulator truncation,” in Proc. 41st Annual Frequency Control Symp., pp. 495 502, 1987.
[49] X. Yu, F.-F. Dai, Y. Shi, and R. Zhu, “2 GHz 8-bit CMOS ROM-less direct digital frequency synthesizer,” in Proc. IEEE Int. Symp. on Circuits and Systems, pp. 4397-4400, May 2005.
[50] S.-C. Yi, K.-T. Lee, J.-J. Chen and C.-H. Lin, “A low power efficient direct digital frequency synthesizer based on new two-level lookup table,” in Proc. 2006 Canadian Conference on Electrical and Computer Engineering, pp. 963-966 , May 2006.
[51] M. Kesoulis, D. Soudris, C. Koukourlis and A. Thanailakis, “Systematic methodology for designing low power direct digital frequency synthesisers,” IET Circ. Devices Syst., vol. 1, no. 4, pp. 293-304, Aug. 2007.
[52] S.-S. Jeng, H.-C. Lin, and C.-Y. Wu, “DDFS design using the equi-section division method for SDR transceiver,” in Proc. 19th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, pp. 1-5, Sept. 2008.
[53] X. Li, L. Lai, A. Lei, and Z Lai, “A memory-reduced direct digital frequency synthesizer for OFDM receiver systems,” IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 1564-1568, Nov. 2008.
[54] M.-J.-M. Pelgrom and E.-C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 823-825, July. 1995.
[55] C.-H. Chuang, and M.-D. Ker, “Design on mixed voltage-tolerant I/O interface with novel tracking circuits in a 0.13-m CMOS technology,” in Proc. 2004 IEEE Int. Symp. on Circuits and Systems, vol. 2, pp. 577-580, May. 2004.
[56] E.-R. Minami, S.-B Kuusinen, E. Rosenbaum, P.-K. Ko, and C. Hu, “Circuit-level simulation of TDDB failure in digital CMOS circuit,” IEEE Trans. Semiconduct. Manufact., vol. 8, no. 3, pp. 370-374, Aug. 1995.
[57] R. Moazzami and C. Hu, “Projecting gate oxide reliability and optimizing reliability screens,” IEEE Trans. Electron Devices, vol. 37, no. 7, pp. 1643-1650, Jul. 1990.
[58] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Overview and design of mixed-voltage I/ O buffers with low voltage thin-oxide CMOS transistors,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 53, no. 9, pp. 1934 1945, Sept. 2006.
[59] M.-D. Ker and S.-L. Chen, “Design of mixed-voltage I/O buffer by using NMOS-blocking technique,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2324-2333, Oct. 2006.
[60] M. Takahashi, T. Sakurai, K. Sawada, K. Nogami, M.Ichida, and K. Matsuda, “3.3 V-5 V compatible I/O circuit without thick gate oxide,” in Proc. IEEE Custom Integrated Circuit Conf., pp. 23.3.1-23.3.4, 1992.
[61] C. Petersen and A.-R. Barlow, “High voltage circuits in standard CMOS processes,” in Proc. IEDM Tech. Dig., pp. 287-291, 1982.
[62] M.-D. Ker and C.-H. Chung, “Electrostatic discharge protection for design for mixed-voltage CMOS I/O buffers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1046-1055, Aug. 2002.
[63] G. Liu, Y. Wang, and S. Jia, “A new design of mixed-voltage I/O buffers with low-voltage-thin-oxide CMOS process,” in Proc. Int. Conf. on ASIC, pp. 201 204, Oct. 2007.
[64] A.-J. Annema, G.-J.-G.-M. Geelen, and P.-C. de Jong, “5.5-V I/O in a 2.5-V 0.25-m CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[65] S.-L. Chen and M.-D. Ker, “An output buffer for 3.3-V applications in a 0.13-m 1/2.5-V CMOS process,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 54, no. 1, pp. 14-18, Jan. 2007.
[66] M.-D. Ker and S.-L. Chen, “Mixed-voltage I/O buffer with dynamic gate-bias circuit to achieve 3VDD input tolerance by using 1VDD devices and single VDD supply,” in Proc. 2005 IEEE Int. Solid-State Circuits Conf., vol. 1, pp. 524-614, Feb. 2005.
[67] H. Sanchez, J. Siegel, C. Nicoletta, J. P. Nissen, and J. Alvarez, “A versatile 3.3/2.5/1.8-V CMOS I/O driver built in a 0.2-m, 3.5-nm Tox, 1.8-V CMOS technology,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1501 1511, Nov. 1999.
[68] M.-D. Ker and F.-L. Hu, “Design on mixed-voltage I/O buffers with consideration of hot-carrier reliability,” in Proc. 2007 Int. Symp. on VLSI Design, Auto. and Test, pp. 36-39, Apr. 2007.
[69] R. Chauhan, K. Rajagopal, V. Menezes, H.-M. Roopashree, and S.-K. Jacob, “A high performance, high voltage output buffer in a low voltage CMOS process,” in Proc. IEEE 2005 Custom Integrated Circuits Conf., pp. 227-230, Sept. 2005.
[70] A.-T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling Effects,” in Proc. IEEE Int. Electron Device Meeting Tech. Dig., pp. 14.5.1-14.5.4, Dec. 2003.
[71] G.-P. Singh and R.-B. Salem, “High-Voltage Tolerant I/ O Buffers with Low-Voltage CMOS Process,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1512-1525, Nov. 1999.
[72] T.-J. Lee, W.-C. Chang, and C.-C. Wang, “Mixed voltage-tolerant I/O buffer using a clamping dynamic gate bias generator,” in Proc. 2007 IEEE Region 10 Conf.-TENCON 2007, pp. 148, CD-ROM, FrSC-O 9.3, Oct. 2007.
[73] B. Serneels, T. Piessens, M. Steyaert, and W. Dehanene, “A high-voltage output driver on a 2.5-V 0.25-m CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 576-583, Mar. 2005.
[74] T.-J. Lee, T.-Y. Chang, and C.-C. Wang, “Wide range 5.0/3.3/1.8 V I/O buffer using 0.35-m 3.3-V CMOS technology,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 56, no. 4, pp. 763-772, Apr. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.130.13
論文開放下載的時間是 校外不公開

Your IP address is 52.14.130.13
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code