Responsive image
博碩士論文 etd-0707112-145620 詳細資訊
Title page for etd-0707112-145620
論文名稱
Title
生物活性碳濾床去除民生放流水有機物
Removal of Organic Matters from Domestic Wastewater Using GAC Trickling Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-07-07
關鍵字
Keywords
生物活性碳濾床、總有機碳、溶解性有機碳
bio-activated carbon filter system, total organic carbon, dissolved organic carbon
統計
Statistics
本論文已被瀏覽 5655 次,被下載 2454
The thesis/dissertation has been browsed 5655 times, has been downloaded 2454 times.
中文摘要
由於台灣人口密集民生用水需求量大,若能利用民生放流水進行回收,再經妥善再生後將可成為一種輔助與備載水源且能分擔主要用水需求。目前來說,再生回收水是一種新興的管理與應用,若能適當監控與處理,其能有效減少環境中的污染物、降低成本及環境回饋。
本研究利用粒狀生物活性碳濾床處理鳳山溪民生放流水,觀察民生放流水中有機碳之去除效率。由實驗顯示,有機碳濃度隨著空床停留時間的增加,去除率隨之上升,其中TOC與DOC平均最佳去除效率於72% 與78% 左右。比較不同溫度下粒狀活性碳之TOC去除效率方面,實驗前段粒狀活性碳於室溫(25℃)與4℃下TOC之去除效率分別為95 % 與90%;實驗後段為 85 % 和 80 % ;DOC之去除效率於實驗前段分別為95% 與90%;實驗後段為90 % 和 87 %,即可發現室溫(25℃)處理有機碳比4℃下來得好。
於系統處理水與再生水水質標準比較方面,水質參數(水溫、懸浮固體物、BOD、COD、pH)皆能符合再生水水質標準。不過由於本系統採用生物活性碳濾床處理,處理水中溶氧容易下降且導電度也不會有所影響,故該兩項水質參數普遍未符合水質標準。
另外,將馴養後之粒狀活性碳經由SEM照攝下發現室溫(25℃)馴養下之粒狀活性碳表面生物膜面積較4℃下來得多,從對應有機碳之去除效率來看,其去除效率也較4℃來得高。由此可知,生物膜面積與有機碳之去除效率具有一定的關係。
Abstract
Because of high intense population is in Taiwan, households water use requires a considerable amount. It is substantially reduce daily water use to share primary water resources, if we can reclaim domestic wastewater properly and make it support. Currently, reclaiming water is an emerging requirement for management and application. If we can adequately monitor and treat reclaimed water, reducing environmental contaminants, costs, and environmental feedback is possible.
The study treated domestic wastewater of Feng-Shan river using GAC trickling filter with two column in a series and the removal efficiency of organic carbon was observed. The experimental results indicated that removal efficiency of organic carbon concentration was decreased as the empty-bed contact time (EBCT) increased. The best average removal efficiency of TOC and DOC was about 72% and 78%. According to the TOC removal rates using GAC at different temperatures, the TOC removal rates at room temperature and 4℃were respectively 95% and 90% in the first column of the experiment and 85% and 80% in the second column. The removal rates of dissolved organic carbon (DOC) using GAC folter system at room temperature and 4℃ were respectively 95% and 90% in the first column of the experiment and 90% and 87% in the second column. Obviously,the TOC removal rate treated using GAC filter system at room temperature was superior to that treated at 4℃
In comparing treated water and recycled water,most of the water quality parameters (temperature、Suspended solids、BOD、COD、pH) were to meet recycled water quality standards.However, the system due to use GAC trickling filter system treatment that easily decrease dissolved oxygen in treated water but conductivity in treated water without changes. These two water parameters were failed to meet the recycled water standards.
By the way, we found trained GAC through SEM irradiation the biofilm area of trained GAC surface at 25℃was superior to that treated at 4℃. It corresponds to the removal efficiency of organic carbon, the removal efficiency of 25℃ was higher than result of 4℃. Therefore, a certain relationship between the biofilm area and removal efficiency of organic carbon is existed in this work.
目次 Table of Contents
摘 要 I
Abstract II
目 錄 IV
圖 次 VI
表 次 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究內容與目的 2
第二章 文獻回顧 3
2-1 水體中有機物分類及性質 3
2-1-1 自然水體中有機物分類與性質 3
2-1-2 自然有機物與腐植質 6
2-1-3 民生污水有機物性質與來源 8
2-2 鳳山溪污水廠介紹 10
2-2-1 鳳山溪污水廠水質背景 10
2-2-2 鳳山溪污水廠處理流程 14
2-3 吸附原理 16
2-3-1 等溫吸附模式 19
2-3-2 吸附動力模式 22
2-4 活性碳處理方法 24
2-4-1 活性碳的種類與原理 24
2-4-2 活性碳處理民生放流水 26
2-5 生物可分解有機質 31
2-5-1 生物可分解有機質測定 31
2-5-2 生物可利用有機碳 33
第三章 研究方法 40
3-1 實驗流程之規劃 40
3-1-1 生物活性碳濾床處理方法 41
3-1-2 粒狀活性碳處理方法 43
3-1-3 微生物馴養 44
3-2 水質項目與分析方法 45
3-2-1 pH與水溫 47
3-2-2 自由有效餘氯 47
3-2-3 導電度 47
3-2-4 溶氧 48
3-2-5 生物可利用有機碳 49
3-2-6 總有機碳與溶解性有機碳 57
3-2-7 氨氮 58
3-2-8 大腸桿菌群 58
3-2-9 COD 59
3-2-10 BOD 59
3-2-11 掃描式電子顯微鏡 60
第四章 結果與討論 65
4-1 以生物活性碳濾床串聯民生放流水之水質分析 65
4-1-1 TOC 67
4-1-2 DOC 69
4-1-3 AOC 71
4-1-4 NH3-N 73
4-1-5 COD 75
4-1-6 BOD 77
4-1-7 SS 79
4-1-8 以生物活性碳濾床處理民生放流水之最佳操作條件 81
4-2 不同溫度下, 民生放流水經粒狀活性碳處理之關係 84
4-2-1 不同溫度下,民生放流水經處理後之TOC比較 85
4-2-2 不同溫度下,民生放流水經處理後之DOC比較 88
4-3 處理後民生放流水與各項水質標準及指標之探討 90
4-3-1 民生放流水處理前後之河川污染指標探討 91
4-3-2 民生放流水處理後與各項再生水水質標準比較 94
4-4 粒狀活性碳馴養 96
第五章 結論與建議 100
5-1 結論 100
5-2 建議 101
參考文獻 102
附錄 108
參考文獻 References
Aktas, Q., Cecen, F., (2007), “Bioregeneration of activated carbon: Areview.” International Biodeterioration & Biodegradation, 59(4), 257-272.
Allen, S.J., McKay, G., Porter, J.F., (2004), “Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems” Journal of Colloid and Interface Science, 280(2), 322-333.
Biber, M. V., Gulacar, F. O., Buffle, J., (1996), “Seasonal Variations in Principal Groups of Organic Matter in a Eutrophic Lake Using Pyrolysis /GC/MS.” Environment Science and Technology, 30(12), 3501-3607.
Croue, J.P., (2004), “Isolation of Humic and Non-Humic NOM Fractions: Structural Characterization.” Environ Monit Assess, 92(1-3), 193-207.
Devi, R., Dahiya, R.T., (2008), “COD and BOD removal from domestic wastewater generated in decentralised sectors.” Bioresource Technology, 99(2), 334-349.
Edwards., Gerald, A., Amirtharajah, A., (1985), “Removing Color Caused by Humic Acids.” 77(3), 50-57.
Ghosh, U., Weber, A.S., Jensen, J.N., Smith, J.R., (1999), “Granular activated carbon and biological activated carbon treatment of dissolved and sorbed polychlorinated biphenyls.”, Water Environment Research, 71(2), 232–240.
Gobel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., (2007), “Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies.” Science of the Total Environment, 372(2~3), 361~371.
Hallam, N.B., Hua, F., West, J.R., Forster, C.F., Simms, J., (2003), “Bulk Decay of Chlorine in Water Distribution Systems.” ASCE, 129(1), 78-81.
Jansen, S.A., Malaty, M., Nwabara, S., Johnson, E., Ghabbour, E., Davies, G., Varnum, J.M., (1996), “Structural modeling in humic acids.” Materials Science and Engineering:C4, (3), 175-179.
Joss, A., Siegrist, H., Ternes, T.A., (2008), “Are we about to upgrade wastewater treatment for removing organic micro pollutants?” Water Science & Technology, 57(2), 251-255.
Kalkan, C., Yapsakli, K., Mertoglu, B., Tufan, D., Saatci, A., (2011), “Evaluation of BiologicalActivatedCarbon (BAC) process inwastewatertreatmentsecondaryeffluent forreclamationpurposes.” Desalination, 265(1-3), 266-273.
Karge, H.G., Weitkamp, J., (2008), “Adsorption and Diffusion 7.”
Kemmy, F.A., Fry, J.C., Breach, R.A., (1989), “Development and operational implementation of a modified and simplified method for determination of assimilable organic carbon (AOC) in drinking water.” Water Science & Technology, 21(3), 155-159.
Langlais, B., Reckhow, D. A., Brink, D.R., (1991), “Practical application of ozone. Ozone In Water Treatment : Application and Engineering.” AWWA RF and Lewis Publishers.
LeChevallier, M.W., (1999), “The Case for Maintaining a Disinfectant Residual.” Joural AWWA, 91(1), 86-94.
Leenheer, J.A., Croue, J.P., (2003), “Characterizing aquatic dissolved organic matter.” Environ Sci Technol, 37(1), 18-26.
Leenheer, J.A., Croue, J.P., Benjamin, M., Korshin, G.V., Hwang, C.j., Bruchet, A., Aiken, G.R., (2000), “Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing.” ACS Symposium Series, 761.
Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed L., Bhatnagar, A., Sillanpaa, M., (2011), “An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment.” Chemosphere, 83, 1431-1442.
Onesios, K.M., YU, J.T., Bouwer, E.J., (2009), “Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review.” Biodegradation, 20(4), 441-466.
Osai, Y.T., Weng, Y.H., Lin, A.Y.C., Lin, K.C., (2011), “Electro-microfiltration treatment of water containing natural organic matter and inorganic particles.” Desalination, 267(2-3), 133-138.
Reungoat, J., Escher, B.I., Macova, M., Keller, J., (2011), “Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity.” Water Research, 45(9), 2751~2762.
Reungoat, J., Macova, M., Escher, B.I., Carswell, S., Mueller, J.F., Keller, J., (2010), “Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration.” Water Research, 44 (2), 625~637.
Schnitzer, M., (1972), “Humic substances in the environment.”
Servais, P., Billen, G., HascoeT, M.C., (1987), “Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters.” Water Research, 21(4), 445-450.
Servais, P., Laurent, P., Randon, G., (1995), “Comparison of the bacterial dynamics in various french distribution system.” J Water SRT-Aqua, 44(1),10-17.
Simpson, D.R., (2008), “Biofilm processes in biologically active carbon water purification.” Water Research, 42(12), 2839~2848.
Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., Decarolis, J., Oppenheimer, J., Wert, E.C., Yoon, Y., (2007), “Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals.” Science Direct, 156-181.
Staler, D., Magdeburg, A., Oehlmann, J., (2010), “Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an invivotest battery.” Water Research, 44(8), 2610-2620.
Stalter, D., Magdeburg, A., Wagner, M., Oehlmann, J., (2011), “Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity.” Water Research, 45(3), 1015~1024.
Stalter, D., Magdeburg, A., Wagner, M., Oehlmann, J., (2011), “Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity.” Water Research, 45(3), 1015~1024.
Stevenson, F.J., (1982), “Humus Chemistry.” Wiley Interscience Publications.
Suffet, I.H., Carthy, P.M., (1989), “Aguatic Humic Substance.”
Thurman, E.M., (1986), “Organic geochemistry of natural waters.”
Van Der Kooij, D., (1990), “Assimilable organic carbon (AOC) in drinking water.” in Drinking Water Microbiology, 57-87.
Van der Kooij, D., (1999), “Development and application of methods for assessing the biostability of drinking water and materials in contact with drinking water.” In The 5th International Workshop on Drinking Water Quality Management and Treatment Technology.
Van der Kooij, D., Hijnen, W.A.M., Kruithof, J.C., (1989), “The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water.” Ozone: Science and Engineering, 11, 297-311.
Van Der Kooij, D., Veenendaal, H.R., (1995), “Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures.”
Van Der Kooij, D., Visser, A., Hijnen, W. A. M., (1982), “Determining the concentration of easily assimilable organic carbon in drinking water.” Joural AWWA, 74(10), 540-545.
Van Der Kooij, D., Visser, A., Hijnen, W. A. M., (1982), “Determining the concentration of easily assimilable organic carbon in drinking water.” Joural AWWA, 74(10).
Vieira, P., COelho, S.T., Loureiro, D., (2004), “Accounting for the influence of initial chlorine concentration, TOC, iron and temperature when modelling chlorine decay in water supply” J Water Supply:Res Technol-AQUA, 53(7), 453-467.
Voice, T.C., Pak, D., Zhao, X., Shi, Jing., Hickey, R.F., (1992), “Biological activated carbon in fluidized bed reactors for the treatment of ground water contaminated with volatile aromatic hydrocarbons.”, Water Research, 26(10), 1389-1401.
Xing, W., Ngo, H.H., Kim, S.H., Guo, W.S., Hagare, P., (2008), “Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters.” Bioresource Technology, 99(18), 8674-8678.
Yapsakli, K., Cecen, F., (2010), “Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters.” Process Biochem, 45(3), 355–362.
朱永成(2005),黏粒中不同水合能交換性陽離子催化加氯副產物之探討,國立中央大學環境工程研究所,碩士論文。
行政院環保署網站,http://www.epa.gov.tw.。
李文聖(2004),都市污水廠放流水再生利用之潛勢分析,國立台北科技大學環境規劃與管理研究所,碩士論文。
梁仲暉、王郁萱、朱敬平、江家菱、許國恩、鍾裕仁、趙永楠、王國樑(2010),全國廢污水處理廠放流水回收潛勢調查,永續產業發展雙月刊,第50期。
曾如玲(2006) ,玉米穗軸以KOH 化學活化法製備高表面積活性碳及其應用,台灣大學環境工程學研究所,博士論文。
歐陽嶠暉(2004),下水道與資源再生利用,中興工程科技研究發展基金會,台北。
蔡宇庭(2003),水中天然有機物與濁度對外加電場薄膜處理程序之影響研究,國立台灣大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code