Responsive image
博碩士論文 etd-0707114-180008 詳細資訊
Title page for etd-0707114-180008
論文名稱
Title
微孔霧化片陣列之噴霧熱流可視化及性能分析
Performance Analysis and Visualization of Thermal hydraulics Characteristics of Liquid Spray through Micro-nozzle Plate Arrays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-23
繳交日期
Date of Submission
2014-09-01
關鍵字
Keywords
ITO透明加熱板、噴霧冷卻、動態粒徑分佈、超聲波微孔霧化片、紅外線影像儀
Ultrasound micro-nozzle atomizer, ITO transparent heater, Spray cooling, IR detector, dynamic droplet size distribution
統計
Statistics
本論文已被瀏覽 5694 次,被下載 506
The thesis/dissertation has been browsed 5694 times, has been downloaded 506 times.
中文摘要
本實驗使用三種孔徑的超聲波微孔霧化片,對ITO透明加熱板進行噴霧冷卻,觀察噴霧冷卻加熱板底面暫態的沸騰區與非沸騰區的可視化流場觀測,其所使用之工作流體為去離子水,在暫態實驗中的主要參數為噴嘴與加熱板(ITO heater)之間距(Z = 30, 50, 70, 90, 100 mm)、加熱板中心溫度(Tc =25, 75, 125, 175, 225 oC)、孔徑大小(dj = 7, 10, 35 μm),來觀測在不同時刻和不同參數下,液滴在加熱板上的暫態行為及動態粒徑分佈,並記錄加熱面溫度分佈,來分析噴霧冷卻對加熱面的溫度降,最後,藉由實驗的結果,來設計CPU的微型噴霧冷卻系統。本實驗使用T-type thermocouple、μPIV、高速攝影機已及紅外線影像儀(IR Detector)等儀器來量測並分析流場及熱場的特性。
Abstract
In this study, we use an ultrasound micro-nozzle atomizer, made of piezoelectric ceramic material as the cooling system apparatus to observe the spray impinging on an ITO transparent heater. The working fluid is DI water and the main experimental parameters are the distance from nozzle to target, Z(30, 50, 70, 90, 100 mm), the temperature of the heater at the center point, Tc(25, 75, 125, 175, 225 oC), and nozzle diameter, dj(7, 10, 35 μm). The μPIV technique and a high speed camera are used to record the 2-D velocity distribution of a spray flow field on the side view and dynamic droplet size distribution on the lower view, respectively. In regard to the thermal characteristic, we use a data logger, T-type thermocouple wire and IR detector to record the surface temperature distribution on a transparent heater, and carry out an analysis of the heater’s temperature drop result from spray cooling. Finally, we develop a mini spray cooling system for CPUs or other electrical devices.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xi
第一章 序論 1
1-1前言 1
1-2背景 1
1-3文獻回顧 4
1-4研究目的 14
第二章 實驗室統與設備 15
2-1 微質點影像測速儀系統 15
2-2 超聲波微孔霧化片 16
2-3 ITO石英加熱板 17
2-4 數據擷取系統 17
2-5 交流電源控制系統 19
2-6 高速影像感應擷取系統 19
2-7 水位控制循環系統 19
2-8 其他實驗周邊設備 20
第三章 實驗方法及步驟 40
3-1 測試表面製作 40
3-2 噴霧系統製作 40
3-3 實驗參數 41
3-4 實驗方法 42
3-5 實驗步驟 43
第四章 理論分析 55
4-1 熱傳分析與計算 55
4-2 平均衝擊粒徑定義與計算 56
4-3 熱通量計算 56
4-4 噴霧熱損失計算 57
第五章 誤差分析 58
第六章 結果與討論 62
6-1 微孔霧化片μPIV流場分析 62
6-2 高速攝影及動態液滴分佈 64
6-2-1 高速攝影及動態液滴分佈 64
6-2-2 高速攝影及動態液滴分佈 64
6-3 溫度量測及熱傳分析 68
6-4 微型噴霧系統設計及性能量測 71
第七章-結論與建議 137
7-1 結論 137
7-2 建議與改進 138
參考文獻 139
附錄A 147
附錄B 154
參考文獻 References
[1] R. R. Perron, "The Design and Application of a Reliable Ultrasonic Atomizer," Sonics and Ultrasonics, IEEE Transactions on, vol. 14, 1967, pp. 149-152.
[2] A. Hjortsberg, I. Hamberg, and C. G. Granqvist, "Transparent and Heat-Reflecting Indium Tin Oxide-Films Prepared by Reactive Electron-Beam Evaporation," Thin Solid Films, vol. 90, 1982, pp. 323-326.
[3] M. Ghodbane and J. P. Holman, "Experimental-Study of Spray Cooling with Freon-113," International Journal of Heat and Mass Transfer, vol. 34, Apr-May 1991, pp. 1163-1174.
[4] T. Y. Xiong and M. C. Yuen, "Evaporation of a Liquid Droplet on a Hot Plate," International Journal of Heat and Mass Transfer, vol. 34, Jul 1991, pp. 1881-1894.
[5] K. A. Estes and I. Mudawar, "Correlaton of Sauter Mean Diameter and Critical Heat-Flux for Spray Cooling of Small Surfaces," International Journal of Heat and Mass Transfer, vol. 38, Nov 1995, pp. 2985-2996.
[6] D. D. Hall and I. Mudawar, "Experimental and Numerical Study of Quenching Complex-Shaped Metallic Alloys with Mutiple, Overlapping Sprays," International Journal of Heat and Mass Transfer, vol. 38, May 1995, pp. 1201-1216.
[7] I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," Journal of Heat Transfer-Transactions of the Asme, vol. 118, Aug 1996, pp. 672-679.
[8] J. Yang, L. C. Chow, and M. R. Pais, "Nucleate Boiling Heat Transfer in Spray Cooling," Journal of Heat Transfer-Transactions of the Asme, vol. 118, Aug 1996, pp. 668-671.
[9] R. J. Benjamin and A. R. Balakrishnan, "Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties," Experimental Thermal and Fluid Science, vol. 15, Jul 1997, pp. 32-42.
[10] J. D. Bernardin, C. J. Stebbins, and I. Mudawar, "Effects of Surface Roughness on Water Droplet Impact History and Heat Transfer Regimes," International Journal of Heat and Mass Transfer, vol. 40, Jan 1997, pp. 73-88.
[11] K. Oliphant, B. W. Webb, and M. Q. McQuay, "An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime," Experimental Thermal and Fluid Science, vol. 18, Sep 1998, pp. 1-10.
[12] K. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, "Spray Cooling under Reduced Gravity Condition," Journal of Heat Transfer-Transactions of the Asme, vol. 123, Apr 2001, pp. 309-318.
[13] R. H. Chen, L. C. Chow, and J. E. Navedo, "Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling," International Journal of Heat and Mass Transfer, vol. 45, Sep 2002, pp. 4033-4043.
[14] H. J. Chung and H. C. No, "Simultaneous Visualization of Dry Spots and Bubbles for Pool Boiling of R-113 on a Horizontal Heater," International Journal of Heat and Mass Transfer, vol. 46, Jun 2003, pp. 2239-2251.
[15] L. C. Lin and R. Ponnappan, "Heat Transfer Characteristics of Spray Cooling in a Closed Loop," International Journal of Heat and Mass Transfer, vol. 46, Sep 2003, pp. 3737-3746.
[16] G. Percin and B. T. Khuri-Yakub, "Piezoelectric Droplet Ejector for Ink-Jet Printing of Fluids and Solid Particles," Review of Scientific Instruments, vol. 74, 2003, pp. 1120-1127.
[17] R. H. Chen, L. C. Chow, and J. E. Navedo, "Optimal Spray Characteristics in Water Spray Cooling," International Journal of Heat and Mass Transfer, vol. 47, Nov 2004, pp. 5095-5099.
[18] B. Horacek, J. Kim, and K. T. Kiger, "Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements," Ieee Transactions on Device and Materials Reliability, vol. 4, Dec 2004, pp. 614-625.
[19] S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics of Water and R-134a. Part 1: Nucleate Boiling," International Journal of Heat and Mass Transfer, vol. 47, Dec 2004, pp. 5703-5712.
[20] S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling," International Journal of Heat and Mass Transfer, vol. 47, Dec 2004, pp. 5713-5724.
[21] B. Vukasinovic, M. K. Smith, and A. Glezer, "Spray Characterization during Vibration-Induced Drop Atomization," Physics of Fluids, vol. 16, Feb 2004, pp. 306-316.
[22] B. Horacek, K. T. Kiger, and J. Kim, "Single Nozzle Spray Cooling Heat Transfer Mechanisms," International Journal of Heat and Mass Transfer, vol. 48, Apr 2005, pp. 1425-1438.
[23] A. G. Pautsch and T. A. Shedd, "Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part I: Heat Transfer Data Using FC-72," International Journal of Heat and Mass Transfer, vol. 48, Jul 2005, pp. 3167-3175.
[24] T. A. Shedd and A. G. Pautsch, "Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part II: Visualization and Empirical Models," International Journal of Heat and Mass Transfer, vol. 48, Jul 2005, pp. 3176-3184.
[25] S. S. Hsieh and H. H. Tsai, "Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling," Archives of Dermatological Research, vol. 298, Jul 2006, pp. 82-95.
[26] A. G. Pautsch and T. A. Shedd, "Adiabatic and Diabatic Measurements of the Liquid Film Thickness during Spray Cooling with FC-72," International Journal of Heat and Mass Transfer, vol. 49, Jul 2006, pp. 2610-2618.
[27] J. R. Rybicki and I. Mudawar, "Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays," International Journal of Heat and Mass Transfer, vol. 49, Jan 2006, pp. 5-16.
[28] S. Freund, A. G. Pautsch, T. A. Shedd, and S. Kabelac, "Local Heat Transfer Coefficients in Spray Cooling Systems Measured with Temperature Oscillation IR Thermography," International Journal of Heat and Mass Transfer, vol. 50, May 2007, pp. 1953-1962.
[29] Y. R. Jeng, P. Y. Tu, G. H. Feng, C. C. Su, and Y. Y. Peng, "PZT Bimorph Actuated Atomizer Based on Higher Order Harmonic Resonance and Reduced Operating Pressure," Sensors and Actuators a-Physical, vol. 136, May 2007, pp. 434-440.
[30] J. H. Kim, "Spray Cooling Heat Transfer: The State of the Art," International Journal of Heat and Fluid Flow, vol. 28, Aug 2007, pp. 753-767.
[31] Y.-R. Jeng, G.-H. Feng, and C.-C. Su, "Droplets Ejection Apparatus and Methods," Recent Patents on Engineering, vol. 2, 2008, pp. 201-207.
[32] M. Visaria and I. Mudawar, "Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phases Spray Cooling and Critical Heat Flux," International Journal of Heat and Mass Transfer, vol. 51, May 2008, pp. 2398-2410.
[33] M. Visaria and I. Mudawar, "Application of Two-Phase Spray Cooling for Thermal Management of Electronic Devices," Ieee Transactions on Components and Packaging Technologies, vol. 32, Dec 2009, pp. 784-793.
[34] B. Abbasi, J. Kim, and A. Marshall, "Dynamic Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients," International Journal of Multiphase Flow, vol. 36, Jun 2010, pp. 491-502.
[35] Y. L. Huang and S. H. Chang, "Micro-Droplets Atomizer Using PZT Ring Actuator," Journal of Mechanics, vol. 26, Sep 2010, pp. 423-429.
[36] E.-S. R. Negeed, N. Ishihara, K. Tagashira, S. Hidaka, M. Kohno, and Y. Takata, "Experimental Study on the Effect of Surface Conditions on Evaporation of Sprayed Liquid Droplet," International Journal of Thermal Sciences, vol. 49, Dec 2010, pp. 2250-2271.
[37] Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, "Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-Boiling Regime," Experimental Thermal and Fluid Science, vol. 34, Oct 2010, pp. 933-942.
[38] Z. B. Yan, K. C. Toh, F. Duan, T. N. Wong, K. F. Choo, P. K. Chan, et al., "Experimental Study of Impingement Spray Cooling for High Power Devices," Applied Thermal Engineering, vol. 30, Jul 2010, pp. 1225-1230.
[39] W.-L. Cheng, F.-Y. Han, Q.-N. Liu, and H.-L. Fan, "Spray Characteristics and Spray Cooling Heat Transfer in the Non-Boiling Regime," Energy, vol. 36, May 2011, pp. 3399-3405.
[40] W.-L. Cheng, F.-Y. Han, Q.-N. Liu, R. Zhao, and H.-l. Fan, "Experimental and Theoretical Investigation of Surface Temperature Non-Uniformity of Spray Cooling," Energy, vol. 36, Jan 2011, pp. 249-257.
[41] W. Deng and A. Gomez, "Electrospray Cooling for Microelectronics," International Journal of Heat and Mass Transfer, vol. 54, 2011, pp. 2270-2275.
[42] M. R. O. Panao, A. L. N. Moreira, and D. F. G. Durao, "Thermal-Fluid Assessment of Multijet Atomization for Spray Cooling Applications," Energy, vol. 36, Apr 2011, pp. 2302-2311.
[43] S. Somasundaram and A. A. O. Tay, "An Experimental Study of Closed Loop Intermittent Spray Cooling of ICs," Applied Thermal Engineering, vol. 31, Oct 2011, pp. 2321-2331.
[44] Y. Tao, X. Huai, L. Wang, and Z. Guo, "Experimental Characterization of Heat Transfer in Non-Boiling Spray Cooling with Two Nozzles," Applied Thermal Engineering, vol. 31, Jul 2011, pp. 1790-1797.
[45] Y. Wang, M. Liu, D. Liu, and K. Xu, "Heat Flux Correlation for Spray Cooling in the Nonboiling Regime," Heat Transfer Engineering, vol. 32, 2011, pp. 1075-1081.
[46] H. D. Haustein, G. Tebruegge, W. Rohlfs, and R. Kneer, "Local Heat Transfer Coefficient Measurement through a Visibly-Transparent Heater under Jet-Impingement Cooling," International Journal of Heat and Mass Transfer, vol. 55, Nov 2012, pp. 6410-6424.
[47] M. R. O. Panao, J. P. P. V. Guerreiro, and A. L. N. Moreira, "Microprocessor Cooling Based on an Intermittent Multijet Spray System," International Journal of Heat and Mass Transfer, vol. 55, May 2012, pp. 2854-2863.
[48] R. H. Pereira, S. L. Braga, and J. A. R. Parise, "Single Phase Cooling of Large Surfaces with Square Arrays of Impinging Water Sprays," Applied Thermal Engineering, vol. 36, Apr 2012, pp. 161-170.
[49] C. Si, S. Shao, C. Tian, and H. Xu, "Development and Experimental Investigation of a Novel Spray Cooling System Integrated in Refrigeration Circuit," Applied Thermal Engineering, vol. 33-34, Feb 2012, pp. 246-252.
[50] Y. Hou, X. Liu, J. Liu, M. Li, and L. Pu, "Experimental Study on Phase Change Spray Cooling," Experimental Thermal and Fluid Science, vol. 46, Apr 2013, pp. 84-88.
[51] J. P. McHale and S. V. Garimella, "Nucleate Boiling from Smooth and Rough Surfaces – Part 1: Fabrication and Characterization of an Optically Transparent Heater–Sensor Substrate with Controlled Surface Roughness," Experimental Thermal and Fluid Science, vol. 44, 2013, pp. 456-467.
[52] J. P. McHale and S. V. Garimella, "Nucleate Boiling from Smooth and Rough Surfaces - Part 2: Analysis of Surface Roughness Effects on Nucleate Boiling," Experimental Thermal and Fluid Science, vol. 44, Jan 2013, pp. 439-455.
[53] Y. B. Tan, J. L. Xie, F. Duan, T. N. Wong, K. C. Toh, K. F. Choo, et al., "Multi-Nozzle Spray Cooling for High Heat Flux Applications in a Closed Loop System," Applied Thermal Engineering, vol. 54, May 30 2013, pp. 372-379.
[54] Z. Zhang, J. Li, and P.-X. Jiang, "Experimental Investigation of Spray Cooling on Flat and Enhanced Surfaces," Applied Thermal Engineering, vol. 51, Mar 2013, pp. 102-111.
[55] S. J. Thiagarajan, S. Narumanchi, and R. Yang, "Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces," International Journal of Heat and Mass Transfer, vol. 69, 2014, pp. 493-505.
[56] A. K. Mozumder, Y. Mitsutake, and M. Monde, "Subcooled water jet quenching phenomena for a high temperature rotating cylinder," International Journal of Heat and Mass Transfer, vol. 68, 2014, pp. 466-478.
[57] Z. Zhang, P. X. Jiang, X. L. Ouyang, J. N. Chen, and D. M. Christopher, "Experimental investigation of spray cooling on smooth and micro-structured surfaces," International Journal of Heat and Mass Transfer, vol. 76, 2014, pp. 366-375.
[58] T. Orzechowski and S. Wciślik, "Instantaneous heat transfer for large drops levitating over a hot surface," International Journal of Heat and Mass Transfer, vol. 73, 2014, pp. 110-117.
[59] S. S. T. Kline and F. A. Mcclintock, "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
[60] R. J. Moffat, "Contributions to the Theory of Single-Sample Uncertainty Analysis," Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
[61] J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code