Responsive image
博碩士論文 etd-0707115-112340 詳細資訊
Title page for etd-0707115-112340
論文名稱
Title
熱致型延遲螢光材料摻雜於磷光有機高分子發光二極體之研究
Study of Thermal Activated Delayed Fluorescences doped in Polymer Phosphorescent Light-Emitting Diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-08-07
關鍵字
Keywords
磷光有機高分子電激發光二極體、逆向系統間跨越、內部量子效率、延遲螢光、熱致型延遲螢光
reverse intersystem crossing, Internal Quantum Efficiency, Delayed Fluorescence, Thermal Activated Delayed Fluorescence, Polymer Phosphorescent Light-Emitting Diodes
統計
Statistics
本論文已被瀏覽 5738 次,被下載 64
The thesis/dissertation has been browsed 5738 times, has been downloaded 64 times.
中文摘要
過去有機發光元件能有突破性的成長,Ir(III)金屬錯合物或其稀有金屬錯合物的研究與改良,佔十分重要的角色。其所製程的磷光材料摻雜之OLED元件,能使內部量子效率接近百分之百,而其高效率PLED也可達60%~70%。而近幾年,其他可以破除25%單重激發態與75%三重激發態的極限之材料技術也陸續發表,熱致型延遲螢光(thermally activated delayed fluorescence,TADF)為其中一種。
  因其TADF材料的單重激發態與三重激發態間的能隙(∆E_ST)很小,可以使得三重態激子可以經由逆向系統間跨越(reverse intersystem crossing)轉入單重激發態,進而放出延遲螢光,因其機制可以加以善用單重激發態與三重激發態之能量,使之內部量子效率也可以接近100%。且材料不需使用稀有金屬,被視為未來廣泛應用的有機材料之一。除使之外,因雙極性特性與能階之設計,也讓TADF也用來當Assistant Dopant,在主客體摻雜系統能有效率的幫助能量的傳遞。在過去幾年文獻中,TADF目前以乾製程有機小分子居多,濕製程也僅摻雜於小分子主體材料上,尚未有研究將TADF材料製程摻雜於磷光PLED元件中。
因此,本論文將TADF(2CzPN,藍光材料)摻雜於Ir(III)金屬錯合物與PVK之主體系統的主客體摻雜發光系統,製做成單層發光層的PLED,希望將非幅射衰退的能量將其回收再將以利用在發光系統上,並探究其發光特性與放光機制。研究結構為:
ITO/PEDOT:PSS(40 nm)/Active Layer(77~80 nm)/LiF(1 nm)/Al(150 nm)
Active Layer:(100-x)% [PVK:OXD-7=6:3]:x% 2CzPN
Active Layer:(100-x)%(87% [PVK:OXD-7=6:3]:13wt% FIrpic):x% 2CzPN
Active Layer:(100-x)%(97% [PVK:OXD-7=6:3]:3wt% Ir(ppy)3):x% 2CzPN
Active Layer:(100-x)%(97% [PVK:OXD-7=6:3]:3wt% WPRD-932):x% 2CzPN
  本論文成功將其2CzPN製成PLED,在2CzPN摻雜濃度為20%時,最大亮度為434 cd/m2,最大電流效率為2.71 cd/A,最大功率效率為1.13 lm/watt。
而在藍光元件與綠光元件之研究中,摻雜2CzPN後,減緩磷光元件高電流密度下之衰退,但並沒有像所預期增進效率,除了捕獲非輻射能量外,同時也影響了磷光材料分子(FIrpic、Ir(ppy)3)本身之放光能量,反而降低了元件亮度與效率。
  然而,在紅光元件之研究中,摻雜2CzPN後,因其2CzPN能量轉移更有效率,元件亮度與效率如預期增進,2CzPN摻雜濃度20%比沒摻雜時,最大亮度提升了112.6%,EQE也提升了74.8%,有著十分顯著地提高。
Abstract
In the past years Organic Light-Emitting Diodes could have great breakthrough, the researches and improvements of Iridium(III) complexes or rare-metal complexes were in the important place. This phosphorescent OLEDs could make Internal Quantum Efficiency hundred percent. Also this phosphorescent PLEDs’ IQE could reach 60%~70%. Recent years, other material technologies which to break the limit of 25% singlet state or 75% triplet state successively published. Thermally activated delayed fluorescence, TADF, was one of them.
Because TADF’s band-gap between Singlet state and Triplet state was very small, it could make Triplet excitons covert into Singlet state by reverse intersystem crossing and then release Delay Fluorescence. This mechanism could effectively use excited energy of Singlet state and Triplet state, and made the IQE hundred percent. Also, TADF material didn’t use rare-metal. It was widely regarded as one of the future of organic material. Moreover, because of bipolar properties and design of energy level, TADF was also used as an Assistant Dopant. It helped energy transfer more effectively in the guest-host doped emitter system. In the past few years the reference, TADF currently use in dry processes of organic small molecules at major. Some wet processes were only for doping in small molecules of host material. There was not yet for TADF doped in Polymer Phosphorescent Light-Emitting Diodes.
Therefore, in this study, we doped 2CzPN, TADF material, in single-emitting Phosphorescent PLED which was made Iridium(III) complexes and PVK. We hoped this structure can recycle the energy of non-radiative decay and reuse at the emitting system. And study for it’s emitting properties and emitting mechanism. The device structure:
ITO/PEDOT:PSS(40 nm)/Active Layer(77~80 nm)/LiF(1 nm)/Al(150 nm)
Active Layer:(100-x)% [PVK:OXD-7=6:3]:x% 2CzPN
Active Layer:(100-x)%(87% [PVK:OXD-7=6:3]:13wt% FIrpic):x% 2CzPN
Active Layer:(100-x)%(97% [PVK:OXD-7=6:3]:3wt% Ir(ppy)3):x% 2CzPN
Active Layer:(100-x)%(97% [PVK:OXD-7=6:3]:3wt% WPRD-932):x% 2CzPN
In our study, we succeeded in using 2CzPN to make PLED. When the doping concentration of 2CzPN was 20%, the maximum luminance was 434 cd/m2, the maximum current efficiency was 2.71 cd/A and the maximum power efficiency was 1.13 lm/watt.
In the studies of blue and green devices, it decreased the efficiency decay of phosphorescent devices in high current density after doping 2CzPN, but it didn’t enhance the efficiency as expected. Except catching the non-radiative energy, it simultaneously influenced the emitting-energy on phosphorescent material (FIrpic, Ir(ppy)3), and decreased the luminance and efficiency of the device instead.
However, in the study of red device, the luminance and efficiency had increased significantly after doping 2CzPN, because 2CzPN let energy transfer more effectively. After doping 20% of 2CzPN, the maximum luminance had enhanced 112.6% and the maximum EQE had enhanced 74.8%.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 有機發光二極體簡介 2
1-2-1 有機小分子發光元件 2
1-2-2 有機高分子發光元件 3
第二章 理論基礎介紹與研究動機 6
2-1 有機發光二極體之發光原理 6
2-2 有機發光二極體之發光機制 8
2-2-1 螢光與磷光 8
2-2-2 發光效率 10
2-2-3 主客體摻雜發光系統之發光機制 13
2-3 熱致型延遲螢光材料介紹 16
2-4 有機發光二極體之發光效率 20
2-5 研究動機 22
第三章 實驗材料、儀器與製程步驟 23
3-1 實驗材料 23
3-2 實驗儀器介紹 27
3-2-1 製程儀器 27
3-2-2 量測分析儀器 30
3-3 元件製作流程 34
3-3-1 ITO陽極圖形化(ITO Patterning) 34
3-3-2 PLED元件製程 36
第四章 實驗架構與結果討論 40
4-1 實驗架構 40
4-2 發光材料之量測 42
4-3 TADF之PLED元件製作 45
4-4 藍光元件 52
4-4-1 藍光標準元件之優化 52
4-4-2 藍光元件摻入TADF之特性比較 55
4-5 綠光元件 61
4-5-1 綠光標準元件之優化 61
4-5-2 綠光元件摻入TADF之特性比較 64
4-6 紅光元件 71
4-6-1 紅光標準元件之優化 71
4-6-2 紅光元件摻入TADF之特性比較 74
第五章 結論 81
參考文獻 82
參考文獻 References
[1] M. Pope; P. Magnante; H. P. Kallmann, Journal of Chemical Physics, 38, 2042 .(1963).
[2] C.W. Tang; S. A. Vanslyke, Appl. Phys. Lett., 51, 913. (1987).
[3] C.W. Tang; S. A. Vanslyke; C.H. Chen, Appl. Phys. Lett., 65, 36100. (1989)
[4] J. Shi; C.W. Tang, Appl. Phys. Lett., 70, 1665. (1997)
[5] J.H. Burrououghes, D.D. C Bradley, A.R. Brown, R.N. Marks, K. MacKet, R.H. Friend, P.L. Burn, A.B. Holmes, Nature, 347,539. (1990).
[6] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature, 365, 628. (1993)
[7] Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, Appl. Phys. Lett., 77, 694. (1995)
[8] A. Kraft, A. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., 37,402. (1998)
[9] G. Gustafson, Y. Cao, Traecy, G. M. F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357, 477. (1992)
[10] S. H. Ko, “Organic Light Emitting Diode - Material, Process and Devices”, InTech(2011)
[11] T. Sugimoto, K. Fukutani, NATURE PHYSICS, 7, 307. (2011)
[12] M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, VCH, New York. (1995)
[13] M. A. Baldo, D. F. O Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151.(1998)
[14] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4. (1999)
[15] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 90, 5048. (2001)
[16] Y. Kawamura, S. Yanagida, S. R. Forrest, Appl. Phys. Lett., 92, 87 (2002)
[17] J. Thompson, R. I. R. Blyth, M. Mazzeo, M. Anni, G. Gigli, and R. Cingolani, Appl. Phys. Lett., 79, 560. (2001)
[18] H. Wu, J. Zou, F. Liu, L. Wang, A. Mikhailovsky, G. C. Bazan, W. Yang, Y. Cao, Adv. Mater., 20, 696–702 (2008)
[19] 陳金鑫、黃孝文 著,“OLED 有機電激發光材料與元件”,五南出版社,(2005)
[20] Förster, T. Ann. , Physik., 2, 55.( 1948)
[21] Förster, T. Disc., Faraday Soc., 27, 7. (1958)
[22] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B , 60, 14422. (1999)
[23] H. Suzuki, A. Hoshino, J. Appl. Phys. 79, 8816 (1996).
[24] M. Uchida,C. Adachi, T. Koyama, Y. Taniguchi, . J. Appl, Phys., 86, 1680. (1999)
[25]S. Lamansky, P. Djurovich, F. Abdel-Razzaq, S. Garon, D. Murphy, M. E. Thompson,. J. Appl. Phys., 92, 1579. (2002)
[26]X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, Adv. Funct. Mater., 13, 439. (2003)
[27] R. J . Holmes,B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson,. Appl. Phys. Lett., 83, 3818. (2003)
[28] X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, M. E. Thompson,Chem. Mater., 16, 4743. (2004)
[29] J. B. Birks, Photophysics of Organic Molecules (Wiley, New York, 1970) ,p. 372.
[30] D. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys. 106, 124510 (2009).
[31] C. T. Brown and D. Kondakov, J. Soc. Inf. Disp. 12, 323. (2004).
[32] Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki,H.; Adachi, C. Appl. Phys. Lett., 98, 083302. (2011)
[33] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 492, 234. (2012)
[34] 陳金鑫、黃孝文 著,“OLED夢幻顯示器.OLED材料與元件”,五南出版社,2012出版四刷
[35] S.R. Forrest, D.D.C. Bradley, M.E. Thompson, Adv. Mater., 15, 1043.(2003)
[36] D. Zhang, L. Duan, Y. Li, D. Zhang and Y. Qiu, J. Mater. Chem. C, 2, 8191.(2014)
[37] T. Sato, M. Uejima, K. Tanaka, H. Kajic , C. Adachi, J. Mater. Chem. C, 3, 870.(2015)
[38] B. S. Kim, J. Y. Lee, Organic Electronics, 21, 100.(2015)
[39] 陳一帆,碩士論文,國立中山大學光電研究所(2006)
[40] 陳金鑫、黃孝文 著,“OLED 有機電激發光材料與元件”,五南出版社.(2005)
[41] 黃珮瑄,碩士論文,國立中山大學光電研究所(2013)
[42] 歐俊賢,碩士論文,國立中山大學光電研究所(2009)
[43] 廖久富,碩士論文,國立中山大學光電研究所(2014)
[44] H. Wu, J. Zou, F. Liu, L. Wang, A. Mikhailovsky, G. C. Bazan,W. Yang, and Y. Cao, Adv. Mater., 20, 696. (2008)
[45] D. H. Lee, Y. P. Liu, K. H. Lee, H. Chae, S. M. Cho, Organic Electronics, 11, 427.(2010)
[46] S. O. Jeon, J. Y. Lee, Organic Electronics, 12, 1893. (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code