Responsive image
博碩士論文 etd-0707115-141228 詳細資訊
Title page for etd-0707115-141228
論文名稱
Title
以加強式硫酸鹽還原法處理受石油碳氫化合物污染之地下水
Application of Enhanced Sulfate Reduction Method to Remediate Petroleum-hydrocarbon Contaminated Groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-14
關鍵字
Keywords
緩釋合成物、石油碳氫化合物、加強式生物復育、地下水污染、硫酸鹽還原
groundwater contamination, sulfate reduction, petroleum hydrocarbon, releasing materials, enhanced bioremediation
統計
Statistics
本論文已被瀏覽 5718 次,被下載 0
The thesis/dissertation has been browsed 5718 times, has been downloaded 0 times.
中文摘要
由於石油碳氫化合物被廣泛運用,造成土壤地下水受油污染是一個普遍且嚴重的問題,其污染物以非水相溶液(non-aqueous phase liquids, NAPLs)存在地下水中,對地下水之水質可能造成長期的危害,廣泛於汽油中添加劑甲基第三丁基醚(methyl tertiary-butyl ether, MTBE)及汽油中主要成分苯(benzene)及甲苯(toluene),以上三種化合物在石油碳氫化合物中水溶性相對較高,因此當受油品污染該些物質於地下水中溶於水傳輸性較佳,在加上benzene具致癌性及MTBE具有對動物致癌性,當意外洩漏時對人類健康及環境具有嚴重危害。本研究以MTBE、benzene及toluene作為目標污染物,並發展主動及被動加強式硫酸鹽還原方法,以有效處理石油碳氫化合物污染之地下水。本研究針對緩釋合成物進行配比設計及釋放實驗瞭解釋放效果;微生物批次及管柱實驗瞭解微生物降解能力,並結合變性膠體電泳(denaturing gradient gel electrophoresis, DGGE)及定序技術進行菌種鑑定以瞭解其功能及特性。研究結果顯示微生物批次實驗結果自然衰減組初期會消耗溶氧進行好氧反應,當還原電位低於-150 mV會啟動硫酸鹽還原作用。硫酸鹽還原基質組確實可刺激微生物生長,對Toluene、Benzene及MTBE降解效率分別為90%、63%及8%,但隨基質的消耗及硫化物生成,會產生抑制現象。硫酸鹽還原基質添加二價金屬組,Toluene及Copper,降解效率分別99及100%,二價銅與硫化物產生硫化物銅生物沉澱,並能降低硫化物對微生物之毒性。緩釋合成物實驗結果澱粉組S-B1(-1.46×10-2)、稻殼組R-B3(-2.18×10-2),釋放總量超過70%,釋放時間較長,且釋放速率穩定。管柱實驗現地土壤對污染物吸附作用為Toluene>Benzene>MTBE。主動加強式管柱實驗降解效率Toluene、Benzene及MTBE第一階段(92%、65%及45%),衰減率分別為(34.24、1.75及1 d-1)第二階段(64%、52%及40%),衰減率分別為(1.34、1.14及0.95 d-1),隨著二價鐵的消耗,及硫化物大量的生成累積,造成為生物受到抑制,因而降低對污染物去除效率,定序鑑定出39種菌株,包含具有降解芳香烴及以硫酸鹽還原方式降解石油碳氫化合物之功能。被動加強式管柱實驗Toluene、Benzene及MTBE第一階段(96%、69%及36%),衰減率分別為(5.74、2.08及0.78),第二階段(90%、61%及22%),衰減率分別為(4.05、1.70及0.43),緩釋合成物主要為聚乳酸及稻殼粉組成其具有吸附作用能於初期聚集污染物,隨著硫酸鹽濃度的減少微生物對污染物的降解會有減緩或停滯。在硫酸鹽還原條件下,Toluene是較Benzene及MTBE更易被生物降解。案例設計目標廠址Toluene污染總量為59.8 kg,,其共需提供86.4 kg硫酸鹽,依攔阻日通量計算0.52 kg/ day,每日硫酸鹽投藥量為2.46 kg,共需花費36天進行整治。以最佳釋出效率之組別R-B3 (2.8 mg of SO4/day/g material)共需提供 879 kg 之緩釋硫酸鹽合成物於9口井。結果顯示硫酸鹽還原方法為一個環境和經濟上可接受的修復技術。整治方案預計將提供一個更具成本效益的替代修復受石油烴污染之地下水。從這項研究中獲得的知識將有助於規劃硫酸鹽還原系統現場整治。
Abstract
Groundwater at many existing or former industrial areas and underground storage tank sites is contaminated by petroleum hydrocarbons. The purpose of this study was to develop a passive enhanced sulfate reduction system to treat the methyl tertiary-butyl ether (MTBE), benzene, and toluene contaminated groundwater. A sulfate-releasing material was developed for long-term sulfate releasing for sulfate supplement. Microcosm study was performed to evaluate the contaminants (e.g., MTBE, benzene, toluene) removal efficiency under sulfate reducing conditions. A column experiment was applied to evaluate the effectiveness and mechanisms of sulfate reduction processes on the bioremediation of benzene, toluene, and MTBE contaminated groundwater. The denaturing gradient gel electrophoresis (DGGE) and DNA sequencing methods were also applied to determine the microbial diversity and dominant bacteria under sulfate reducing conditions. Results from the microcosm study show that the ORP dropped to below -150 mv after initial oxygen consumption. Sulfate reduction was activated when the oxidation-reduction stage reached anaerobic conditions. Results show that the removal efficiencies for toluene, benzene, and MTBE were 90, 63, and 8%, respectively. The sulfate reduction process was inhibited after the sulfate was consumed. The production of sulfide also caused the inhibition of the sulfate reduction process. In the experiment with Cu(II) addition, the removal efficiencies for toluene and Cu(II) were 99 and 100%, respectively. Results also show that the formation of Cu precipitate was observed due to the reaction of Cu and sulfide. This would result in the reduction of toxicity effect caused by the sulfide. In the sulfate releasing experiment, the sulfate release rates were -1.46×10-2 and -2.18×10-2 in starch and rice husk groups, respectively. The total amount of sulfate release reached 70%. In the column experiment with sulfate addition, simulated anaerobic groundwater containing benzene, toluene, and MTBE (average concentration = 20 mg/L) was pumped into the system at a flow rate of 0.36 mL/min. Sulfate (used as the electron acceptor) was injected into the system to activate the sulfate reducing process. Anaerobic sludge collected from an anaerobic basin of an industrial wastewater treatment plant was inoculated into the system to enhance the sulfate reduction rate. Up to 92, 65, and 45% of toluene, benzene, and MTBE removal efficiencies were observed with the first-order decay rate of 34, 1.8, and 1 1/d, respectively. Results indicate that toluene is more biodegradable under sulfate reducing conditions compared to benzene and MTBE, and 0.7 g/L of sulfate consumption was observed during the biodegradation process. The occurrence of sulfate reduction can be confirmed by the increased sulfide (increased from 7 - 9 to 340 - 520 mg/L) and ferrous iron (increased from <0.1 to 52 mg/L then dropped to 0.14 mg/L due to the formation of iron sulfide) concentrations. In the latter part of this study, accumulation of hydrogen sulfide caused the microbial inhibition, and thus, decreased contaminant removal efficiencies were observed. The microbial communities were characterized by 16S rRNA-based DGGE profiling for soils in the system. Results show that sulfate addition could result in the enhancement of sulfate reducer growth, and thus, sulfate reduction became the dominant biodegradation process. A total of 39 different petroleum-hydrocarbon degrading bacteria were observed under the sulfate-reducing conditions. Results indicate that the sulfate reduction has the potential to be developed into a practically and economically acceptable technology to remediate petroleum-hydrocarbon contaminated groundwater.
目次 Table of Contents
謝誌.. i
中文摘要 ii
Abstract iv
目錄.. vi
圖目錄 ix
表目錄 xi
一、 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 4
二、 文獻回顧 5
2.1 土壤地下水油品污染概況 5
2.1.1 MTBE特性與危害 5
2.1.2 BTEX特性與危害 6
2.2 土壤及地下水整治技術 8
2.2.1 整治技術發展 8
2.2.2 綠色整治技術 9
2.2.3 生物降解 10
2.3 硫酸鹽還原理論 12
2.3.1 自然生物復育中的硫酸鹽還原 18
2.3.2 加強式硫酸鹽還原方法 18
2.3.3 硫酸鹽還原相關案例 20
2.3.4 使用硫酸鹽加強生物復育技術之優勢 23
2.4 透水性反應牆 25
2.4.1 控制釋放技術的發展 27
2.4.2 生物可分解之高分子材料的發展 28
2.5 分子生物在地下水生物復育之應用 29
2.5.1 以16S rDNA為基礎之分子生物技術 31
2.5.2 生物指標(microbial biomarker) 32
三、 實驗設備與方法 34
3.1 材料與方法 34
3.2.1 實驗藥品及材料 34
3.2.2 實驗器材 34
3.2.3 實驗用水 34
3.2.4 供試土壤來源 35
3.2.5 供試地下水來源 37
3.2.6 緩釋控制釋放物質 37
3.2 實驗方法 40
3.3.1 微環境實驗 (microcosm) 40
3.3.2 管柱試驗 41
3.3.3 實驗分析方法 44
四、 結果與討論 51
4.1 微生物批次試驗 51
4.1.1 自然衰減組 52
4.1.2 硫酸鹽還原基質組 55
4.1.3 硫酸鹽還原基質添加二價金屬組 59
4.1.4 批次實驗生物沉澱分析 62
4.1.5 菌相分析結果 64
4.2 緩釋合成物 65
4.2.1 緩釋合成物配比設計 65
4.2.2 緩釋物質批次試驗 66
4.3 主動加強式管柱實驗 80
4.3.1 管柱土壤污染物濃度累積試驗 80
4.3.2 管柱水質基本性質分析 82
4.3.3 管柱污染物分析 88
4.3.4 管柱菌相分析 92
4.4 被動加強式管柱實驗 98
4.4.1 管柱水質基本性質分析 98
4.4.2 管柱污染物分析 102
4.5 案例設計規劃與緩釋硫酸鹽合成物添加量估算 105
五、 結論與建議 108
5.1 結論 108
5.2 建議 110
參考文獻 111
參考文獻 References
石明正,王玉柔,潘姿瑜,范育珊,郭宗儒,施乃綺,柯廷華,(2008),稻殼吸附METHYLENE BLUE的吸附等溫線研究,台灣環境資源永續發展研討會,2,1–11。
石濤,(2006),環境微生物,鼎茂圖書出版股份有限公司。
李啟銘,(2006),以生物可降解性聚己內酯複合材料包埋溶磷菌 Bacillus sp. Strain PG01 進行微生物釋放與性質之研究,高苑科技大學高分子環保材料研究所碩士論文。
於秋霞、朱光明、梁國正、杜宗剛、官兆合,(2004),聚ε-己內酯的合成、性能及應用發展,高分子材料科學與工程,第20卷,第5期。
林文元,(1998),油品在幾種台灣土壤中之吸附,脫附與移動性探討,國立屏東科技大學環境工程與科學系碩士論文。
林志恩,(2010),河川水質及底泥管理策略之研究,國立中山大學環境工程研究所博士論文。
林幸穎,(2008),口服特殊劑型介紹,北醫藥訊,第40期,第1-7頁。
殷敬華、莫志深,(2001),現代高分子物理上冊。
郭育嘉,(2009),以釋氧化劑物質處理受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所碩士論文。
郭雅鈴,(2006),應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所碩士論文。
程修和,(2009),食物學原理,華都文化事業有限公司。
楊立新,趙淑珍,陳學思,景遐斌,(2007),聚乳酸熔體紡絲,粘接和吸附性能的初步研究,高分子學報,第十期,959–966。
經濟部能源局,全國各縣市加油站查詢(http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx)
鍾佳琪,(2010),以垂直流式人工濕地處理含硫酸鹽廢水之研究,國立中山大學海洋環境及工程學系研究所碩士論文。
Abu, G. O. and Dike, P. O. (2008). A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta. Bioresour Technol, 99, 4761–4767.
Aburto-Medina, A. and Ball, A. S. (2014). Microorganisms involved in anaerobic benzene degradation. Annals of Microbiology, 10.1007/s13213–014–0926–8.
Aeckersberg, F., Rainey, F. A. and Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol, 170, 361–369.
Ahmad, F., Schnitker, S. P. and Newell, C. J. (2007). Remediation of RDXand HMX-contaminated groundwater using organic mulch permeable reactive barriers. J. Contam. Hydrol., 90, 1–20.
Ahmed, F.E., (2001). Toxicology and human health effects following exposure to oxygenated or reformulated gasoline. Toxicol Lett., 123, 89–113.
Al-Zuhair, S., El-Naas, M. H. and Al-Hassani, H. (2008). Sulfate inhibition effect on sulfate-reducing bacteria.J. Biochem. Technol., 1, 39–44.
Barton, C. S., Stewart, D. I., Morris, K. and Bryant, D. E. (2004). Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB.” J. Hazard. Mater., B116, 191–204.
Barton, L.L., Fardeau, M.L. and Fauque, G.D. (2014). Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. Met. Ions Life Sci., 14, 237–277.
Bastida, F., Rosell, M., Franchini, A. G., Seifert, J., Finsterbusch, S., Jehmlich, N., Jechalke, S., von Bergen, M. and Richnow, H. H. (2010). Elucidating MTBE degradation inamixed consortium usinga multidisciplinary approach.FEMS Microbiol. Ecol., 73(2), 370–384.
Beller, H. R., Reinhard, M. and Grbic-Galic, D. (1992). Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment culture. Appl. Environ. Microbiol., 58,3192–3195.
Bermudez, E., Willson, G., Parkinson, H., Dodd, D. (2011). Toxicity of methyl tertiarybutyl ether (MTBE)following exposure of Wistar Rats for 13 weeks or one year via drinking water. J. Appl. Toxicol., 32, 687–706.
Birk, G. M., Knox, S. L. and Yeh, M. C. (2010). Accelerated site cleanup using a sulfate-enhanced in situ remediation strategy. (http://www.environmental-expert.com/companies/eos-remediation-llc-8491)
Boll, M., Löffler, C., Morris, B. E. L., and Kung, J. W. (2014). Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ. Microbiol., 16, 612–627.
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and N. Meunier, J. F. (2006). Blais, Bioremediation of hazardous wastes-a review. Pract. Period. Hazard. Toxic. Radioact Waste Manage, 10, 59–72.
Bruce, L., Kolhatkar, A. and Cuthbertson, J. (2009). Comparison of BTEX attenuation rates under anaerobic conditions. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy., 14, 14.
Chang, W., Um, Y. and Holoman, Tracey, R. P. (2006). Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis.Biotechnol. Lett., 28, 425–430.
Chen, K. F., Kao, C. M., Chen, C. W., Surampalli, R. Y. and Lee, M. S. (2010). Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J. Environ. Sci., 22(6), 864–871.
Chen, K. F., Kao, C. M., Chen, T. Y., Weng, C. H. and Tsai, C. T. (2006). Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environ. Geol., 50, 439–445.
Chen, T.H., Wang, J., Zhou, Y.F., Yue, Z.B., Xie, Q.Q. and Pan, M. (2014).Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance.Bioresour. Technol., 151, 1–5.
Chen, W. F. and Liu, T. K. (2005). Ion activity products of iron sulfides in groundwaters: implications from the Choshui fan-delta, western Taiwan.Geochim Cosmochim Acta 69,3535–3544.
Coates, J. D., Chakraborty, R., McInerney, M. J. (2002). Anaerobic benzene biodegradation - a new era. Res. Microbiol, 153, 621–628.
Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R. and Hirschler-Rea, A. (2005). Anaerobic n-alkane metabolism by a sulfatereducing bacterium, Desulfatibacillum aiphaticivorans Strain Cv2803t. Appl. Environ. Microbiol., 71, 3458–3467.
Cunningham, J. A., Rahme H., Hopkins, G. D., Lebron, C. and Reinhard, M. (2001). Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by Combined Injection of Nitrate and Sulfate.Environ. Sci. Technol., 35, 1663–1670.
Cuthbertson, J. and Schumacher, M. (2010). Full scale implementation of sulfate enhanced biodegradation to remediate petroleum impacted groundwater.Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 14, 15.
Cuthbertson, J. F., Kaestner, J. A. and Bruce, L. G. (2007). Use of high concentration magnesium sulfate solution to remediate petroleum impacted groundwater. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 12, 24.
Cuthbertson, J., Kaestner, J. and Bruce, L. (2006). Use of high concentration magnesium sulfate solution to remediate petroleum impacted groundwater. paper presented at the 22nd Annual International Conference on Soils, Sediments & Water, Amherst, MA, 17-19.
Da Silva, M. L. B. and Alvarez, P. J. J. (2004). Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns. Appl. Environ. Microbiol., 70, 4720–4726.
Da Silva, M.L.B., Ruiz-Aguilar, G.M.L. and Alvarez, P.J.J. (2005). Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegrad, 16, 105–114.
Dar, S. A., Kleerebezem, R., Stams, A. J. M., Kuenen, J. G. and Muyzer, G. (2008). Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol., 78, 1045–1055.
Dar, S. A., Yao, L., Dongen, U. V., Kuenen, J. G. and Muyzer, G. (2007) Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers. Appl. Environ. Microbiol., 73(2), 594–604.
Devlin, J.F., Katic, D. and Barker, J.F. (2004). In situ sequenced bioremediation of mixed contaminants in groundwater. J. Contam. Hydrol., 69, 233-261.
Dou,J., Liu, X., Hu, Z. and Deng, D. (2008). Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J. Hazard Mater., 151 (2–3),720–729.
Dowideit, K., Heidrun, S. M., Rona, M. G., Lothar, V., Martina, F., Anja, B. D. and Christoph, C. T. (2010). Spatial heterogeneityof dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores froma polluted field site. FEMS Microbiol. Ecol., 71(3), 444–459.
Dunbar, J., Ticknor, L. O., and Kuske, C. R. (2000). Assessment of microbial diversity in four southwestern United States soil by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66, 2943–2950.
Dyer, M. (2003). Field investigation into the biodegration of TCE and BTEX at a formermetal plating works. Eng. Geol., 70, 321–329.
Dyer, M. (2003). Field investigation into the biodegration of TCE and BTEX at a formermetal plating works. Eng. Geol., 70, 321–329.
El-Hady, O. A., and Camilia, Y. E. (2006). Modified Bitumen Emulsion for Coating Fertilizers. Journal of Applied Sciences Research, 2(2), 100–105.
Felipe, B., Mònica, R., Alessandro, G. F., Jana, S., Stefanie, F., Nico, J., Sven, J., Martin, V. B. and Hans, H. R. (2010). Elucidating MTBE degradation inamixed consortium usinga multidisciplinary approach. FEMS Microbiol. Ecol., 73(2), 370–384.
Firmino, P.I.M., Farias, R. S., Buarque, P.M.C., Costa, M C., Rodriguez, E., Lopes, A.C. and dos Santos, A.B. (2015). Engineering and microbiological aspects of BTEX removal in bioreactors under sulfate-reducing conditions. Chem. Eng. J., 260, 503–512.
Freeborn, R. A., West, K. A., Bhupathiraju, V. K., Chauhan, S., Rahm, B. G., Richardson, R. E. and Lisa, A. C. (2005). Phylogenetic Analysis of TCE-Dechlorinating Consortia Enriched on a Variety of Electron Donors. Environ. Sci. Technol., 39(21), 8358–8368.
Fries, M. R., Forney, L. J. and Tiedje, J. M. (1997). Phenol and toluene degrading microbial population from an aquifer in whish successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol., 63, 1523–1530.
Gallagher, E., McGuinness L., Phelps C., Young, L. Y. and Kerkhof, L. J. (2005). 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stableisotope probing. Appl. Environ. Microbiol., 71, 5192–5196.
Griebler, C. and Lueders, T. (2008).Microbial biodiversity in groundwater ecosystems. Freshwater Biol, 54, 649–677.
Harris, S. H., Istok, J. D. and Suflita, J. M. (2006). Changes in organic matter biodegradability influencing sulfate reduction in an aquifer contaminated by landfill leachate. Microb. Ecol., 51, 535–542.
Heider, J. (2007). Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol, 11, 188–194.
Herrmann, S., Kleinsteuber, S., Neu, T. R., Richnow, H. H. and Vogt, C. (2008). Enrichment of anaerobic benzene-degrading microorganisms by in situ microcosms, FEMS Microbiol. Ecol., 63, 94–106.
IARC (2004). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 83, Tobacco Smoke and Involuntary Smoking, Lyon
Inbakandan, D., Murthy, P. S., Venkatesan, R. and Khan, S. A. (2010). 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull. Biofouling, 26(8), 893–899.
Jahn, M.K., Haderlein, S.B. and Meckenstock, R.U. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Applied Environmental Microbios, 71, 3355–3358.
Jehmlich, N., Kleinsteuber, S., Vogt, C., Benndorf, D., Harms, H., Schmidt, F., von Bergen, M. and Seifert, J. (2010). Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. J. Appl. Microbiol. ISSN, 1364–5072.
Jin, R.C., Yang, G.F., Zhang, Q.Q., Ma, C., Yu, J.J. and Xing, B.S. (2013). The effect of sulfide inhibition on the ANAMMOX process. Water Res., 47, 1459–1469.
Ju, F. and Zhang, T. (2014). Novel Microbial Populations in Ambient and Mesophilic Biogas-Producing and Phenol-Degrading Consortia Unraveled by High-Throughput Sequencing. Microbiol. Ecol., 68(2), 235–246.
Kao, C. M., Chen, C. S., Tsa, F. Y., Yang, K. H., Chien, C. C., Liang, S. H., Yang C. A. and Chen, S. C. (2010). Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J. Hazard. Mater., 178(1-3), 409–416.
Kao, C.M., Chen, C.Y., Chen, S.C., Chen, Y.L. (2008). Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation.Chemosphere.,70(8), 1492-149.
Kao, C.M., Chen, K.F., Chen, Y.L. and Chen. T.Y. (2004). Biobarrier System for Remediation of TCE-Contaminated Aquifers. Bull. Environ. Contam. Toxicol., 37(1), 87–93.
Kao, C.M., Chen, S.C., Wang, J.Y., Chen, Y.L. and Lee, S.Z. (2003a). Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Res., 37(1), 27–38.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., and Wu, W.S. (2003b). Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res, 37, 4885–4894.
Kao, C.M., Chien, H.Y., Surampalli, R.Y., Chien, C.C., and Chen, C.Y. (2010(b)). Assessing of Natural Attenuation and Intrinsic Bioremediation Rates at a Petroleum-Hydrocarbon Spill Site: Laboratory and Field Studies. J. Environ. Eng., 136, 54–67.
Kao, C.M., Huang, W.Y., Chang, L.J., Chien, H.Y. and Hou, F. (2005). Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site. Water Sci. Technol., 53, 321–328.
Kariminik, A., Amini, J. and Saeidi, K. (2013). Biodegradation of Methyl tert-butyl ether by isolated bacteria from contaminated soils to gasoline. Int. Res. J. Appl. Basic Sci., 5 (12), 1566–1569.
Kasai, Y., Takahata, Y., Manefield, M. and Watanabe, K. (2006). RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater. Appl. Environ. Microbiol., 72(5), 3586–3592.
Kleikemper, J., Pombo, S.A., Schroth, M.H., Sigler, W.V., Pesaro, M. and Zeyer, J. (2005). Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., 71, 149–158.
Kleinsteuber, S., Schleinitz, K. M., Breitfeld, J., Harms, H., Richnow, H. H. and Vogt, C. (2008). Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol. Ecol., 66(1), 143–157.
Knöller, K., Schubert, M. (2010). Interaction of dissolved and sedimentary sulfur compounds in contaminated aquifers. Chem. Geol., 276, 284–293.
Kolb, A., Püttmann, W. (2006). Comparison of MTBE concentrations in groundwater of urban and nonurban areas in Germany. Wat. Res., 40, 3551–3558.
Kolhatkar, R. and Taggart, D. (2004). Enhanced bioremediation using sulfate and/or nitrate.
Kolhatkar, R., Wilson, J.T. and Dunlap, L.E. (2000). Evaluating Natural Biodegradation of MTBE at multiple UST sites. NGWA/API Petroleum Hydrocarbons & Organic Chemicals in Groundwater, API. 32-49.
Kuo, Y. C., Liang, S. H., Wang, S. Y., Chen, S. H. and Kao, C. M. (2014). Application of Emulsified Substrate Biobarrier to Remediate TCE-Contaminated Groundwater: Pilot-Scale Study.J. Hazard. Toxic Radioact. Waste, 18(2), 04014006.
Laurinavichene, T.V., Laurinavichius, K.S., Belokopytov, B.F., Laurinavichyute, D.K. and Tsygankov, A.A. (2013). Influence of sulfate-reducing bacteria, sulfide and molybdate on hydrogen photoproduction by purple nonsulfur bacteria.Int. J. Hydrogen Energy, 38, 5545–5554.
Lazaro, C. Z., Vich, D. V., Hirasawa, J. S., Varesche, M. B. A. (2012). Hydrogen production and consumption of organic acids by a phototrophic microbial consortium. Int. J. Hydrogen Energy, 37(16), 11691–11700.
Lee, E.S., Woo, N.C., Schwartz, F.W., Lee, B.S., Lee, K.C., Woo, M.H., Kim, J.H., and Kim, H.K. (2007). Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: A pilot-scale flow-tank study. Chemosphere, 71, 902–910.
Lei, L., Khodadoust, A.P., Suidan, M.T. and Tabak, H.H. (2005). Biodegradation of sediment-bound PAHs in field-contaminated sediment. WaterRes, 39, 349–361.
Lenka, V., Jan, N., Martina, S. and Martin, K. (2006). The biofiltration permeable reactive barrier: Practical experience from Synthesia. Int. Biodeterior. Biodegrad., 58, 224–230.
Lentini, C. J, Wankel, S.D. and Hansel, C. M. (2012). Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol., 3, 404.
Li, D., Yang, M., Li, Z., Qi, R., He, J. and Liu, H. (2008). Change of bacterial communities in sediments along Songhua River in Northeastern China aftera nitrobenzene pollution event. FEMS Microbiol. Ecol., 65(3), 494–503.
Lien, H.L. and Wilkin R.T. (2005). High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 59, 377–386.
Liu, S.J., Jiang, B., Huang G. Q. and Li, X. G. (2006) Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Wat. Res., 40, 3401–3408.
Liu, W.T., Linning, K.D., Nakamura, K., Mino, T., Matsuo, T., and Forney, L.J. (2000). Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiol., 146, 1099–1107.
Liun, C.Y., Speitel, G.E., Georgiou, G. (2001). Kinetics for metyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl. Environ. Microbiol. 67, 2197–2201.
Lookman, R., Verbeeck, M.,Gemoets, J., Van Roy, S., Crynen, J. and Lambié, B. (2013). In-situ zinc bioprecipitation by organic substrate injection in a high-flow, poorly reduced aquifer. J. Contam. Hydrol., 150, 25–34.
Mackay, D. (2008). Natural and Enhanced Bioremediation.
Maier, U., Rugner, H. and Grathwohl, P. (2007). Gradients controlling natural attenuation of ammonium. Appl. Geochem., 22, 2606–2617.
Mbadinga, S. M., Wang, L. Y., Zhou, L., Liu, J. F., Gu, J. D. and Mu, B. Z. (2011). Microbial communities involved in anaerobic degradation of alkanes. Int. Biodeterior. Biodegrad., 65(1), 1–13.
Mirjafari, P. (2014). Complex Biochemical Reactors for Selenium and Sulphate Reduction: Organic Material Biodegradation and Microbial Community Shifts. The University of British Columbia, Chemical and Biological Engineering, Doctor of Philosophy.
Moran, M.J., Zogorski, J.S., Squillace, P.J. (2005). MTBE and gasoline hydrocarbons in ground water of the United States. Ground Water, 43, 615–627.
Morrison, S.J., Metzler, D.R., and Dwyer, B.P. (2002). Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J. Contam. Hydrol., 56, 99–116.
Morse, J.W. and Cornwell, J.C. (1987). Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine. Chem, 22, 55–69.
Muller, S., Vogt, C., Laube, M., Harms, H. and Kleinsteuber, S. (2009). Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions. FEMS Microbiol. Ecol.,70, 586–596.
Muyzer, G. and Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria.Nat. Rev. Microbiol., 6, 441–454.
Nardi, I.R., Ribero, R., Zaiat, M. and Foresti, E. (2005). Anaerobic packed-bed reactor for bioremediation of gasoline-contaminated aquifer. Process Biochemistry, 40, 587–592.
Neuhauser, E.F., Ripp, J.A., Azzolina, N.A., Madsen, E.L., Mauro, D.M. and Taylor, T. (2009). Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: A 14-year field study. Ground Water Monit. Rem., 29, 66–76.
O'Donnell, A. G. and Gorres, H.E. (1999). 16S rDNA methods in soil microbiology. Curr. Opin. Biotechnol., 10, 225–229.
Park, J.B., Lee, S.H., Lee, J.W. and Lee, C.Y. (2002). Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). J. Hazard. Mater., 95, 65–79.
Peacock, A.D., Chang, Y.J., Istok, J.D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K.L. and White, D.C. (2004). Utilization of microbial biofilms as monitors of bioremediation. Microb. Ecol., 47, 284–292.
Peretz, C., Froom, P., and Pardo, A. (2000). Exposure to benzene in fuel distribution installations: monitoring and prevention. Arch. Environ. Health., 55, 439–96.
Peter, C., Lau, K. and Lorengo, V.D. (1999). Genetic Engineering: The frontier of Bioremediation, ES&T, Am. Chem. Soc.
Pollock, J., Weber, K.A., Lack, J., Achenbach, L.A., Mormile, M.R., Coates, J.D. (2007). Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp isolated from salt flat sediments of Soap Lake. Appl. Microbiol. Biotechnol., 77, 927–934.
Pourahmad, J., Eskandari, M.R., Alavian, G., Skaki, F. (2012). Lysosomal membrane leakiness and metabolic biomethylation play key roles in methyl tertiary butyl ether-induced toxicity and detoxification. Toxicol. Environ. Chem., 94, 281–293.
Pruden, A., Suidan, M.T., Venosa, A.D., Wilson, G.J. (2001). Biodegradation of methyl tert-butyl ether under various substrate conditions. Environ. Sci. Technol. 35, 4235–4241.
Qiu, R., Zhao, B., Liu, J., Huang, X., Li, Q., Brewer, E., Wang, S. and Shi, N. (2009). Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area. J. Hazard. Mater., 164, 1310–1315.
Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol., 59, 1444–1451.
Rastogi, G., Osman, S., Kukkadapu, R. K., Engelhard, M. and Vaishampayan, P. A. (2010). Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota. Microb. Ecol., 60, 539–560.
Ren, N., Zhao, Y., Wang, A., Gao, C., Shang, H., Liu, Y. and Wan, C. (2006). The effect of decreasing alkalinity on microbial community dynamics in a sulfate-reducing bioreactor as analyzed by PCR-SSCP. Sci. China, Ser. C Life Sci., 49(4), 370–378.
Ridgeway, H.F., Safarik, J., Phipps, D., Carl, P. and Clark, D. (1990). Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Appl. Environ. Microbiol., 56, 3565–3575.
Rozek, A., Kowalczyk, P. and Wolicka, D. (2013). Revealing Sulfate-Reducing Microorganisms in Oilfield Waters (Flysch Carpathians, South-eastern Poland). Geomicrobiol. J., 30, 268–277.
Schirmer, M., Dahmke, A., Dietrich, P., Dietze, M., Godeke, S., Richnow, H.H., Schirmer, K., Weiss, H. and Teutsch, G. (2006). Natural attenuation research at the contaminated megasite Zeitz. J. Hydrol., 328, 393–407
Siegrist, R.L. (2002), Fundamentals of In Situ Chemical Oxidation (ISCO). Teleconference of In Situ Treatment of Groundwater Contaminated with Non-aqueous Phase Liquids, Dec. 10-11, Chicago, IL.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S. (2001). Principle and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press.
Singh, S. N., Kumari, B. and Mishra, S. (2012). Microbial Degradation of Alkanes.J. Environ. Sci. Health. Part A Environ. Sci. Health Part A Environ. Sci. Eng., 439–469.
Smets, B. F. and Pritchard, P. H. (2003). Elucidating the microbial component of natural attenuation. Curr. Opin. Biotechnol., 14, 283–288.
Smidt, H. and de Vos, W. M. (2004). Anaerobic microbial dehalogenation. Annu. Rev. Microbiol., 58, 43–73.
Snelling, J., Barnett, M.O., Zhao, D., Arey, J.S. (2007). Methyl-tert-hexyl ether and methyl-tert-octyl ether as gasoline oxygenates: anticipating widespread risks to community water supply wells. Environ. Toxicol. Chem., 29, 338–346.
Soga, K., Page, J.W.E. and Illangasekare, T.H. (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. J. Hazard. Mater., 110, 13–27.
Somsamak, P., Richnow, H. H. and Haggblom1, M. M. (2006). Carbon Isotope Fractionation during Anaerobic Degradation of Methyl tert-Butyl Ether under Sulfate-Reducing and Methanogenic Conditions.Appl. Environ. Microbiol., 72, 1157–1163.
Squillace, P.J., Pankow, J.F., Korte, N.E., Zogorski, J.S. (1997). Review of the environmental behavior and fate of methyl tert-butyl ether. Environ. Toxicol. Chem., 16, 1836–1844.
Stams, A.J.M., Flameling, E.M. and Marnette, E.C.L. (1990). The importantance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbial. Ecol., 74, 337–344.
Steffan, R.J., McClay, K., Vainberg, S., Condee, C.W., Zhang, D. (1997). Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl metyl ether by propane-oxidizing bacteria. Appl. Environ. Microbiol. 63, 4216–4222.
Stempvoort, D.R.V., Armstrong, J. and Mayer, B. (2007). Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. J. Contam. Hydrol., 92, 184–207.
Sutherland, J., Adams, C. and Kekobad, J. (2004). Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: Technical and economic comparison for five groundwaters. Wat. Res., 38, 193–205.
Takahata, Y., Kasai, Y., Hoaki, T. and Watanabe, K. (2006). Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Appl. Environ. Microbiol., 73, 713–722.
Tao, Y., Gao, D. W., Fu, Y., Wu, W. M. and Ren, N. Q. (2012) Impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresour. Technol., 104, 73–80.
Tchong, S. I., Xu, H. and White, R. H. (2005). l-Cysteine Desulfidase: An [4Fe-4S] Enzyme Isolated from Methanocaldococcus jannaschii That Catalyzes the Breakdown of l-Cysteine into Pyruvate, Ammonia, and Sulfide. Biochem., 44 (5), 1659–1670.
Tsau, J. L., Guffanti, A. A. and Montville, T. J. (1992). Conversion of Pyruvate to Acetoin Helps To Maintain pH Homeostasis in Lactobacillus plantarum.Appl. Environ. Microbiol., 58(3), 891–894.
U.S EPA. (US Environmental Protection Agency), (1998).MTBE fact sheet #1. Office of Underground Storage Tanks. Washington D.C.
U.S EPA. (US Environmental Protection Agency), (2013). Methyl Tertiary Butyl Ether (MTBE). http://www.epa.gov/mtbe/faq.htm. Office of Transportation and Air Quality. Washington D.C.
U.S. EPA. (2001). A citizen’s guide to monitored natural attenuation. EPA 542–F–01–004.
Urakawa, H., Kita-Tsukamoto, K. and Ohwada, K. (1999). Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiol., 145, 3305–3315.
Volpe, A., Del Moro, G., Rossetti, S., Tandoi, V., Lopez, A. (2009). Enhanced bioremediation of methyl tert-butyl ether (MTBE) by microbial consortia obtained from contaminated aquifer material. Chemosphere, 75, 149–155.
Watanabe, K., Kodama, Y., Syutsubo, K. and Harayama, S. (2000). Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl. Environ. Microbiol., 66, 4803–4809.
Weelink, S. A., Tan, N. C., Ten, B. H., van Doesburg, W., Langenhoff, A. A., Gerritse J. and Stams A. J. (2007). Physiological and phylogenetic characterization ofa stable benzene-degrading, chlorate-reducingmicrobial community. FEMS Microbiol. Ecol., 60(2), 312–321.
Weelink, S. A., van Doesburg, W., Saia, F. T., Rijpstra, W. I., Röling, W. F., Smidt, H. and Stams A. J. (2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol. Ecol., 70(3), 575–585.
Weelink, S.A., Tan, N.C., Ten, B.H., van Doesburg, W., Langenhoff, A.A., Gerritse, J. and Stams, A.J. (2007). Physiological and phylogenetic characterization ofa stable benzene-degrading, chlorate-reducingmicrobial community. FEMS Microbiol. Ecol., 60(2), 312–321.
Widdel, F. (1988). Microbiology, and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of anaerobic microorganisms. Zehnder, A.J.B. (ed.) New York: John Wiley and Sons.
Wiedemeier, T. H., Rifai, H. S., Newell, C. J. and Wilson, J. K. (1999). Natural Attenuation of Fuels and Chlorinated Solvent in the Subsurface.John Wiley & Sons, New York.
Williams, P.R.D. (2014). Methyl tertiary butyl ether (MTBE) and other volatile organic compounds (VOCs) in public water systems, private wells, and ambient groundwater wells in New Jersey compared to regulatory and human-health benchmarks. Environ. Forensics, 15, 97–119.
Wilson, J. T. and Kolhatkar, R. (2002). Role of Natural Attenuation in the Life Cycle of MTBE Plumes. J. Environ. Eng., 128(9), 876–882.
Wolicka, D. and Jarzynowska, L. (2012). Microbiological Reduction of Sulphates in Salty Environments and Mineralogical Characterization of the Transformation Products.Geomicrobiol. J., 29, 528–536.
Wolicka, D. and Borkowski, A. (2007). The geomicrobiological role of sulphate-reducing bacteria in environments contaminated by petroleum products.Geomicrobiol. J., 24(7–8), 599–607.
Wu, C.S. (2008a). Characterizing biodegradability of polylactide (PLA) or PLA-g-aa/starch encapsulatingphosphate- solubilizing bacterium bacillus. Macromol. Biosci., 8, 560–567.
Wu, C.S. (2008b). Controlled release evaluation of bacterial fertilizer using polymer composites as matrix. J. Controlled Release, 132(1), 42–48.
Wu, J., Li, Y., Cai, Z. and Jin, Y. (2014). Pyruvate-associated acid resistance in bacteria. Appl. Environ. Microbiol., 80(14), 4108–4113.
Wu, K.J., Wu C.S. and Chang, J.S. (2007). Biodegradebility and mechanical pro pertie of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. Process Biochem., 42, 699–675.
Wu, Y.W., Huang, G.H., Chakma, A. and Zeng, G.M. (2005). Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221–232.
Xu, M., Chen, X., Qiu, M., Zeng, X., Xu, J., Deng, D., Sun, G., Li, X. and Guo, J. (2012). Bar-coded pyrosequencing reveals the responses of PDBE-degrading microbial communities to electron donor amendments. PLoS ONE, 7, 30439.
Zang, W., Wang, H., Zhang, R., Yu, X. Z., Qian, P. Y. and Wong, M. H. (2010). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicol., 19(1), 96–104.
Zhang, S. Y., Wang, Q. F. and Xie, S. G. (2012). Bacterial and Archaeal Community Structures in Phenanthrene Amended Aquifer Sediment Microcosms Under Oxic and Anoxic. IJER., 6(4), 1077–1088.
Zhao, Y. G., Wang, A. J. and Ren, N. Q. (2010). Effect of carbon sources on sulfidogenic bacterial communities during the starting-up of acidogenic sulfate-reducing bioreactors. Bioresour. Technol., 101(9), 2952–2959.
Zhao, Y., Ren, N., and Wang, A. (2008). Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere, 72(2), 233–242.
Zhou, C., Vannela, R., Hayes, K. F. and Rittmann, B. E. (2014). Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. J. Hazard. Mater., 272, 28–35.
Zhou, L., Li, K. P., Mbadinga, S. M., Yang, S. Z., Gu, J. D. and Mu, B. Z. (2012). Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicol., 21(6), 1680–1691.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.73.187
論文開放下載的時間是 校外不公開

Your IP address is 18.217.73.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code