Responsive image
博碩士論文 etd-0707115-211134 詳細資訊
Title page for etd-0707115-211134
論文名稱
Title
以氮化鎵為基底之三氮族薄膜在自旋電子學與光電子學方面應用之研究
Study of GaN and its alloys for spintronics and optoelectronics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-19
繳交日期
Date of Submission
2015-08-11
關鍵字
Keywords
奈米元件、氮化鎵微米碟、自旋分裂、分子束磊晶、氮化鎵、氮化鋁鎵/氮化鎵異質結構
MBE, GaN microdisk, spin-splitting, nano-device, AlGaN/GaN heterostructure, GaN
統計
Statistics
本論文已被瀏覽 5724 次,被下載 46
The thesis/dissertation has been browsed 5724 times, has been downloaded 46 times.
中文摘要
本論文探討了渥采結構之氮化鎵半導體及其合金在自旋電子學與光電子學中應用的潛力。首先於自旋電子學的部分,我們製備了不同鋁含量之氮化鋁鎵/氮化鎵異質結構半導體樣品,使用Subnikov-de Haas量測,研究樣品倒晶格空間中費米波向量與(k-dependence)自旋分裂能量之關係。研究中觀察到,當量子井中的費米能階接近ΔC1 與ΔC3導帶的反交叉點時,可得到較大的自旋分裂能量。我們也呈現了費米波向量與自旋分裂能量之異常關係來自於Rashba與Dresselhaus效應間以及高磁場貢獻的黎曼效應產生的相互干涉。此外,經由非線性曲線擬合,我們從變溫的Subnikov-de Haas量測當中觀測到了type I 非拋物線型能帶之電子有效質量。
在光電子學應用的方面,我們針對了使用電漿輔助式分子束磊晶成長於鋰化鋁酸基板上的氮化鎵材料進行研究。透過定性的分析,我們得到了理想化成長M面氮化鎵薄膜與c面氮化鎵微米碟的磊晶條件。而實驗成長的c面氮化鎵微米碟亦被單一取出作為奈米結構發光二極體的研究。我們於單一氮化鎵微米碟上備製奈米尺寸的歐姆接點,並量得了氮化鎵微米碟的電阻率為7.037E-3 ohm-cm。此外,我們發展了一套背向式製程,利用p型氮化鎵基板作為氮化鎵微米碟發光二極體所需的電極。透過此一製程方式,將可解決渥采氮化鎵奈米結構上電極製作之難題。
Abstract
The potential of wurtzite GaN and it alloys for applying in the spintronics and optoelectronics has been discussed in this dissertation. For the application of spintronics, AlxG1-xN/GaN samples with different x value have been prepared for the study of the k-dependent spin-splitting in AlxG1-xN/GaN heterostructure by shubnikov-de Haas measurement. A larger spin splitting energy is obtained by pushing the Fermi level in the quantum wells toward the anti-crossing point of ΔC1 and ΔC3 bands. We also demonstrated the spin-orbit interaction by the interference of Rashba, Dresselhaus effects and high-field Zeeman effect in wurtzite GaN/AlxG1-xN heterostructures from SdH measurements, which is yielding an anomalous k-dependent spin splitting energy. Besides, with the nonlinear least-square curve fitting technique, the type I non-parabolic effective mass has been evaluated from the temperature Shubnikov-de Haas measurements.
For the application of optoelectronics, GaN grown on γ-LiAlO2 substrate by plasma-assisted molecular beam epitaxy has been investigated. The optimized growth condition for M-plane epi-film and self-assembled c-plane microdisks has been discussed. In addition, the GaN microdisk has been lifted out for the application of nanostructure LED. The nanoscale ohmic contact has been fabricated on a single GaN microdisk. The resistivity for an awl-shaped GaN microdisk has been measured to be 7.037E-3 ohm-cm. Futhermore, we developed a back processing to fabricate an electrical contact of GaN microdisk on transparent p-type GaN template which can resolve the obstacle of electrical contacts for self-assembled wurtzite nano-devices.
目次 Table of Contents
Contents

論文審定書 i
中文摘要 iii
Abstract iv
Abbreviations, Notations and Symbols v
Chapter 1 Introduction 1
1.1 GaN and its alloys…………………………………………………..........1
1.2 Motivation…………………………………………………………............4
1.3 Outline of the dissertation……………………………………..……..........8
Chapter 2 The study of k-dependent spin splitting in AlxGa1-xN/GaN 9
heterostructures with different Al content
2.1 Spin-orbital interaction in wurtzite GaN……………………………..........9
2.2 Shubnikov-de Haas measurement in x-dependent AlxGa1-xN/GaN heterosturtures………………………………………………………….............11
2.3 Shubnikov-de Haas measurement with persistent photoconductivity effect………………………………………………………………....................19
2.4 Summery……………………………………………………………..........27

Chapter 3 Anomalous k-dependent spin-splitting and effective masses for
nonparabolic band in AlGaN/GaN heterosturcture 28
3.1 Type I non-parabolic effective mass………………………………….......28
3.2 The anomalous k-dependent spin splitting………………………….........36
3.3 Summary…………………………………………………………….............39
Chapter 4 The growth of GaN on -LiAlO2 by plasma-assisted molecular
beam epitaxy 40
4.1 -LiAlO2…………………………………………………………...…..40
4.2 Plasma-assisted molecular beam epitxay………………………....42
4-3 M-plane GaN grown on LAO………………………………………....44
4-4 c-plane GaN grown on LAO…………………………………………..51
4-5 Summary…………………………………………………………….....64
Chapter 5 Electrical contact for wurtzite GaN microdisks 65
5.1 Metallic contacts on the single GaN microdisk……………………..66
5.2 Back processing for GaN-based wurtzite nano-devices…………...73
5.3 Summary……………………………………………………………......86


Chapter 6 Conclusion 87

References 89

Appendix 92
Acknowledgement 102
Publications 104
參考文獻 References
[1] H. Maruska and J. Tietjen, Appl. Phys. Lett 15, 327 (1969)
[2] S. Nakamura, Science 281, 956 (1998 )
[3] H. Maruska, D. Stevenson and J. Pankove, Appl. Phys. Lett. 22, 303 (1973)
[4] J. Pankove, E. Miller and J. Berkeyheiser, J. Lumin. 5, 84 (1972)
[5] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)
[6] H. Amono, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys, 28, L2122 (1989)
[7] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., Part 1 31, 1258 (1992)
[8] M.A. Khan, T.N. Kuznia, A.R. Bhattaraia, D.T. Olson, Appl. Phys. Lett. 62, 1786 (1993)
[9] “The Nobel Prize in Physics 2014.” Nobelprize.org.
[10] F. Yun, M. Reshchikov, L. He, T. King, H. Morkoc, S. Novak and L. Wei, J. Appl. Phys. 92, 4837 (2002)
[11] Ikai Lo, W. T. Wang, M. H. Gau, J. K. Tsai, S. F. Tsay, and J. C. Chiang, Appl. Phys. Lett. 88, 082108 (2006)
[12] Y. C. Hsu, Ikai Lo, C. H. Shih, W. Y. Pang, C. H. Hu, Y. C. Wang and Mitch M. C. Chou, Appl. Phys. Lett. 100, 242101 (2012)
[13] Y. C. Hsu, Ikai Lo, C. H. Shih, W. Y. Pang, C. H. Hu, Y. C. Wang, C. D. Tsai, Mitch M. C. Chou, and Gary Z. L. Hsu, Appl. Phys. Lett. 104, 102105 (2014)
[14] A. Rizzi and H. Lüth, Appl. Phys. A 75, pp 69-77 (2002)
[15] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. menniger, M. Ramsteiner, M. Reiche and K. Ploog, Nature 406, 865 (2000)
[16] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, Appl. Phys. Lett. 60, 3027 (1992)
[17] I. Lo, J. K. Tsai, W. J. Yao, P. C. Ho, L. W. Tu, T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang, and W. C. Tsai, Phys. Rev. B 65, 161306 (2002).
[18] S. B. Lisesivdin, N. Balkan, O. Makarovsky, A. Patanè, A. Yildiz, M. D. Caliskan, M. Kasap, S. Ozcelik and E. Ozbay, J. Appl. Phys. 105 , 093701 (2009)
[19] B. Beschoten, E. Johnston-Halperin, D. K. Young, M. Poggio, J. E. Grimaldi, S. Keller, S. P. DenBaars, U. K. Mishra, E. L. Hu, and D. D. Awschalom, Phys. Rev. B 63, 121202 (2001)
[20] I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)
[21] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990)
[22] I. Lo, W. Y. Pang, Y. L. Chen, Y. C. Hsu, J. C. Chiang, W. H. Lin, W. T. Chiu, J. K. Tsai, and C. N. Chen, Appl. Phys. Lett. 93, 132114 (2008)
[23] I. Lo, M. H. Gau, J. K. Tsai, Y. L. Chen, Z. J. Chang, W. T. Wang, J.-C. Chiang, and T. Aggerstam, Phys. Rev. B 75, 245307 (2007)
[24] W. T. Wang, C. L. Wu, S. F. Tsay, M. H. Gau, I. Lo, H. F. Kao, D. J. Jang, J. C. Chiang, M. E. Lee, Y. C. Chang, C. N. Chen, and H. C. Hsueh, Appl. Phys. Lett. 91, 082110 (2007)
[25] C. L. Wu, S. F. Tsay, W. T. Wang, M. H. Gau, J. C. Chiang, Ikai Lo, H. F. Kao, Y. C. Hsu, D. J. Jang, M. E. Lee and C. N. Chen, J. Phys. Soc. Jpn. 79, 093705 (2010)
[26] X. Cartoixà, D. Z. –Y. Ting, Y.-C. Chang, Appl. Phys. Lett. 83, 1462 (2003)
[27] I. Lo, C. H. Hsieh, Y. C. Hsu, W. Y. Pang, and M. C. Chou, Appl. Phys. Lett. 94, 062105 (2009)
[28] F. Ponce, D. Bour, W. Gotz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996)
[29] E. Schubert, D. Koleske, M. Crawford, S. Lee, Archur J. Fischer, G. Thaler, and M. Bana, Appl. Phys. Lett. 91, 231114 (2007)
[30] S. Nakamura, S.J. Pearton, G. Fasol, The Blue Laser Diode (Springer, Heildelberg, Germany, 2000)
[31] Y. S. Park, M. Holmes, R. Taylor, K. Kim, S. W. Lee, H. Ju and H. Im, Nanotechnology 23, 405602 (2012)
[32] L. Samuelson, Mater. Today 6, 22–31 (2003)
[33] H.M. Kim, Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, Nano Lett. 4, 1059–1062 (2004)
[34] E. I. Rashba and V. I. Sheka, Sov. Phys. Solid State 3, 1257 (1961).
[35] G. Dresselhaus, Phys. Rev. 100, 580 (1955)
[36] S. L. Chung and C. S. Chang, Phys. Rev. B 54, 2491 (1996)
[37] V. I. Litvinov, Phys. Rev. B 68, 155314 (2003)
[38] Ikai Lo, W. T. Wang, M. H. Gau, S. F. Tsay, and J. C. Chiang, Phys. Rev. B 72, 245329 (2005)
[39] Ikai Lo, Y. C. Wang, S. T. You, M. H. Gau, K. Kono, T. Aggerstam, and S. Lourdudoss, manuscript
[40] D. R. Leadley, R. Fletcher, R. J.Nicholas. F.Tao, C. T. Foxon and J.J. Harris, Phys. Rev. B 46, 12439 (1992)
[41] A. C. H. Rowe, J. Nehls, R. Stradling and R. Ferguson, Phys. Rev. B 63, 201307 (2001)
[42] S. Elhamri, R. S. Newrock, D. B. Mast, M. Ahoujja, W. C. Mitchel, J. M. Redwing, M. A. Tischler, and J. S. Flynn, Phys. Rev. B 57, 1374 (1998)
[43] K. K. Choi, D. C. Tsui, and S.C. Palmateer, Phys. Rev. B 33, 8216 (1986)
[44] Ikai Lo, S.J. Chen, Y. C. Lee, Li-Wei Tu, W.C. Mitchel, M. Ahoujja, R.E. Perrin, R.C. Tu, Y.K. Su, W.H. Lan, and S.L. Tu, Phys. Rev. B 57, p.R6819 (1998)
[45] H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Phys. Rev. B 34, 5635 (1986)
[46] Ikai Lo, C. H. Hsieh, Y. L. Chen, W. Y. Pang, Y. C. Hsu, J. C. Chiang, M. C. Chou, J. K. Tsai, and D. M. Schaad, Appl. Phys. Lett. 92, 202106 (2008)
[47] C. H. Hsieh, Ikai Lo, M. H. Gau, Y. L. Chen, M. C. Chou, W. Y. Pang, Y. I. Chang, Y. C. Hsu, M. W. Sham, J. C. Chiang and J. K. Tsai, Jpn. J. Appl. Phys. 47, 891 (2008)
[48] L. Lymperakis and J. Neugebauer, Phys. Rev. B 79, 241308 (2009)
[49] A. Hirai, B. A. Haskell, M. B. McLaurin, F. Wu, M. C. Schmidt, K. C. Kim, T. J. Baker, S. P. DenBaars, S. Nakamura, and J. S. Speck, Appl. Phys. Lett. 90, 121119 (2007)
[50] C.M. Balkas, C. Basceri, R.F. Davis, Powder Diffraction 10, 266 (1995)
[51] Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005)
[52] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 80, 413 (2002)
[53] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Appl. Phys. Lett. 71, 1996 (1997)
[54] V. Kirchner, H. Heinke, U. Birkle, S. Einfeldt, and D. Hommel, Phys. Rev. B 58, 2315 (1998)
[55] Y. C. Hsu, doctoral dissertation, National Sun Yat-sen University (2013)
[56] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S.J. Pearton, J. Electronic Materials 35, 738 (2006).
[57] A. Vaz, M. da Silva, J. Leon,S. A. Moshkalev and J. W. Swart, J. Matter Sci. 43, 3429 (2008)
[58] Q. Z. Liu and S. S. Lau, Solid-State Electron. 42, 677 (1998)
[59] G. Ye, K. Shi, R. Burke, J. M. Redwing and S. E. Mohney, Journal of Nano. 2011, 876287, (2011)
[60] S. Ruvimov, Z. Liliental‐Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.‐F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev and H. Morkoç, Appl. Phys. Lett. 69, 1556 (1996)
[61] J. H. Choi, A. Zoulkarneev, S. Kim, C. W. Baik, M. H. Yang, S S. Park, H. Suh, U. J. Kim, H. B. Son, J. S. Lee, M. Kim, J. M. Kim and K. Kim, Nature Photon 2011, 253 (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code