Responsive image
博碩士論文 etd-0707117-122812 詳細資訊
Title page for etd-0707117-122812
論文名稱
Title
廢鋰電池中金屬鈷回收技術開發
Developing the Metal Cobalt Recycling Technology for Waste Lithium Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-29
繳交日期
Date of Submission
2017-08-07
關鍵字
Keywords
廢棄物回收、鈷、廢鋰電池、微波系統、超音波系統
Waste recycling, Ultrasound system, Microwave system, Waste lithium batteries, Cobalt
統計
Statistics
本論文已被瀏覽 5746 次,被下載 72
The thesis/dissertation has been browsed 5746 times, has been downloaded 72 times.
中文摘要
近年來3C產品蓬勃發展,使全球鋰電池的使用越來越普遍,但如何處理鋰電池電子廢棄物是一大課題。因鋰電池中含有稀少金屬鈷,所以將鋰電池拆解分類後再回收提取價值較高的物質是一較經濟且環保的作法。本研究蒐集廢手機電池中鈷酸鋰及鎳錳鈷酸鋰等正極材料,以硫酸與檸檬酸兩種酸液比較傳統加熱浸漬、微波輔助浸漬與超音波輔助浸漬溶出鋰電池正極材料中金屬鈷之差異性。實驗結果證明微波浸漬與超音波浸漬皆可有效提升金屬鈷之溶出率,其中以微波搭配硫酸輔助溶鈷效果最佳,其條件為利用2M之硫酸並添加2 vol%之雙氧水作為還原劑,在固液比為25g/L、溫度80℃之條件下浸漬5分鐘,溶出率可達100%。微波相較傳統浸漬可減少12倍的時間,且固液比可由20g/L提升至25g/L,有效節省時間及成本。後續經由添加過錳酸鉀去除溶液中雜質錳,於最佳條件pH=2、Mn2+與KMnO4之莫爾比(MRMK ratio)=1.5、反應時間60分鐘下錳之去除率可達97.7%。萃取部分利用二(2-乙基己基)磷酸 (D2EHPA)作為萃取劑萃取酸液中之鈷離子,最佳條件在pH=5、有機相水相比例(O:A ratio)=1及萃取劑濃度0.25M反應60分鐘,鈷萃取率為93.5%。以5M鹽酸反萃取40分鐘,經反萃後之反萃液中鈷含量可高達96.0 %。最後於最佳條件下進行電解,金屬鈷之回收率可接近98%,純度可達98.2%,顯示本研究之技術,可提升廢二次鋰離子電池回收鈷金屬的純度與價值。
Abstract
In recent years, the widespread usage of lithium batteries had led to a large amount of waste. Therefore, recovery of cobalt from waste ithium batteries was the most economic benefits. The purpose of this study was to compare three different methods which were conventional, microwave heating and ultrasonic heating on leaching process. Using 2M sulfuric acid, reducing agent proportion of 2 vol%, temperature of 80 ℃, reaction time of 5 minutes and the ratio of solid-liquid was 25g/L. The cobalt cobalt was up to 100% from the leaching liquor under microwave heating system and reaction time would be greatly reduced about 12 times, compared to traditional methods. For the separation of manganese, 0.5 mol L−1 KMnO4 solution was drop-wise added to the leaching liquor to selectively precipitate Mn2+ under optimized experimental conditions. And about 97.7% Mn2+ is precipitated at equilibrium pH = 2.0, molar ratio of Mn2+ to KMnO4 (MRMK) = 1.5 and reaction time of 60 minute. Therefore, the advisable equilibrium pH would be 5, O:A=1 at room temperature, the Co2+ was extracted by D2EHPA and then about 93.5% Co2+ can be extracted. The stripping was carried out at the 5M of hydrochloric acid, reaction time of 10 minute. The solution that contained the cobalt was metalized by electrolytic refining, and the final purity of the cobalt metal was up to 98.2%.
目次 Table of Contents
學位論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
ABSTRACT v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 前言 1
1-1研究緣起 1
1-2研究目的 3
第二章 文獻探討 4
2-1鋰電池基本簡介 4
2-1-1鋰電池 4
2-1-2鋰電池反應原理 6
2-1-3鋰電池的組成與污染 7
2-1-4鋰電池產業近況 10
2-2鋰電池回收現況 14
2-3冶鍊回收金屬 15
2-3-1濕法冶金 17
2-3-2廢鋰電池回收有價金屬 19
2-4鋰電池中各金屬之性質 21
2-5金屬溶出 25
2-5-1酸溶液 25
2-5-2還原劑 27
2-5-3超音波震盪輔助酸溶 27
2-5-4溶出效率 27
2-5-5微波輔助酸溶 28
第三章 研究方法與流程 30
3-1研究方法 30
3-2進行步驟 30
3-3實驗流程圖 36
3-4實驗使用之檢測方法及儀器 37
3-4-1土壤中重金屬檢測方法-王水消化法 37
3-4-2感應耦合電漿光譜法 37
3-4-3環境掃描式電子顯微鏡 39
3-4-4超音波清洗機 39
3-4-5微波反應裝置 40
3-4-6電化學儀器 41
3-5實驗材料與藥品 42
第四章 結果與討論 43
4-1鋰電池拆解分析 43
4-2鋰電池正極材料全量分析 44
4-3傳統浸漬 45
4-3-1硫酸傳統浸漬 45
4-3-2檸檬酸傳統浸漬 48
4-3-3傳統浸漬硫酸及檸檬酸之最佳浸漬條件 51
4-4微波浸漬 52
4-4-1硫酸微波浸漬 52
4-4-2檸檬酸微波浸漬 57
4-4-3微波浸漬硫酸及檸檬酸之最佳浸漬條件 61
4-5超音波浸漬 62
4-5-1硫酸超音波浸漬 62
4-5-2檸檬酸超音波浸漬 66
4-5-3超音波浸漬硫酸及檸檬酸之最佳浸漬條件 70
4-6微波浸漬、超音波浸漬與傳統浸漬之差異性 70
4-6-1微波浸漬對於各酸液溶出率之影響 70
4-6-2超音波浸漬對於各酸液溶出率之影響 70
4-7各條件下鈷與其他金屬之溶出量 71
4-7-1硫酸傳統浸漬最佳條件下金屬之溶出量 71
4-7-2硫酸微波浸漬最佳條件下金屬之溶出量 72
4-7-3硫酸超音波浸漬最佳條件下金屬之溶出量 73
4-7-4檸檬酸傳統浸漬最佳條件下金屬之溶出量 74
4-7-5檸檬酸微波浸漬最佳條件下金屬之溶出量 75
4-7-6檸檬酸超音波浸漬最佳條件下金屬之溶出量 76
4-8不同微波功率及超音波頻率對溶出效率之影響 77
4-8-1硫酸與檸檬酸於不同微波功率之溶出率 77
4-8-2硫酸與檸檬酸於不同超音波頻率之溶出率 79
4-9正極材料反應前後SEM分析 81
4-10溶出液錳分離效率實驗 84
4-10-1 pH環境對於錳沉澱之效率 84
4-10-2錳沉澱結果 87
4-11萃取分離鈷實驗 88
4-11-1 pH值對各金屬萃取率影響之實驗 88
4-11-2 O:A比對各金屬萃取率影響之實驗 89
4-11-3 萃取劑濃度對各金屬萃取率影響之實驗 90
4-11-4 萃取時間對各金屬萃取率影響之實驗 91
4-11-5最佳條件下萃取前、後各金屬含量 92
4-12反萃取實驗 93
4-13電解回收實驗 96
4-13-1電流0.1A於各電壓下之電解回收率 96
4-13-2電流0.3A於各電壓下之電解回收率 97
4-13-3電流0.5A於各電壓下之電解回收率 98
4-13-4電流0.7A於各電壓下之電解回收率 99
4-13-5電流0.9A於各電壓下之電解回收率 100
4-13-6電壓3V下各電流之鈷回收率差異 101
4-14電解精煉實驗 103
4-15最佳條件之質量平衡圖 104
4-16成本效益分析 105
4-16-1設備成本估算 105
4-16-2每年操作之成本效益分析 105
4-17污染量化分析與處理方式 108
第五章 結論與建議 109
5-1結論 109
5-2建議 111
第六章 參考文獻 112
參考文獻 References
Armstrong R. D., Todd M., Atkinson J. W., Scott K. Electroseparation of cobalt and nickel from a simulated wastewater. J. Appl. Electrochem 1997; 27, 965–969.
Badawy S. M., Nayl A. A., El Khashab R. A., El-Khateeb M. A. Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin. J. Mater Cycles Waste Manage 2014; 16, 739–746.
Castillo S., Ansart F., Laberty-Robert C., Portal J. Advances in the recovering of spent lithium battery compounds. J. Power Sources 2002; 112, 247–254.
Chagnes A., Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 2013; 88, 1191–1199.
Chien S. K., Developing the novel microwave technology for extracting rare metal indium in waste liquid crystal displays. Institute of Environmental Engineering National Sun Yat-sen University Master Thesis 2015.
Chen X., Chen Y., Zhou T., Liu D., Hu H., Fan S. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manage 2015; 38, 349–356.
Chen X., Xu B., Zhou T., Liu D., Hu H., Fan S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Purif. Technol. 2015; 114, 197–205.
Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 2011; 108, 80–86.
Contestabile M., Panero S., Scrosati B. A laboratory-scale lithium-ion battery recycling process. J. Power Sources 2001; 92, 65–69.
Dorella G., Mansur M. B. A study of the separation of cobalt from spent Li-ion battery residues. J. Power Sources 2007; 170, 210–215.
Eskin G. I. Cavitation mechanism of ultrasonic melt degassing. Ultrason. Sonochem. 1995, S137-S141.
Freitas M. B. J. G., Celante V. G., Pietre M. K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 2010; 195, 3309–3315.
Freitas M. B. J. G., Garcia E. M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources 2007; 171, 953–959.
Grimes S. M., Donaldson J. D., Chaudhary A. J., Hassan M. U. Simultaneous recovery of metals and destruction of organic species: cobalt and phthalic acid. Environ. Sci. Technol 2000; 34, 4128–4132.
Huang, K., Li, J., Xu, Z.M. A novel process for recovering valuable metals from waste nickel-cadmium batteries. Environ. Sci. Technol 2009; 43, 8974-8980.
Jha M. K., Kumari A., Jha A. K., Kumar V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag 2013;33, 1890-1897.
Kang J., Senanayake G., Sohn J., Shin S. M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 2010; 100, 168–171.
Leadbeater N. E. and Marco M. Ligand-free palladium catalysis of the suzuki reaction in water using microwave heating. Org. Lett. 2002; 4, No. 17, 2973–2976.
Lee C. K., Rhee K. I. Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 2003; 68, 5-10.
Li J., Shi P., Wang Z., Chen Y., Chang C. C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 2009; 77, 1132–1136.
Li L., Ge J., Chen R., Wu F., Chen S., Zhang X. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 2010; 30, 2615-2621.
Li L., Ge J., Wu F., Chen R. J., Chen S., Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 2010; 176, 288–293.
Li L., Lu J., Ren Y., Zhang X. X., Chen R. J., Wu F., Amine K. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J. Power Sources 2012; 218, 21–27.
Li L., Qu W., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 2015; 282, 544-551.
Li L., Zhai L., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources 2014; 262, 380–385.
Li Y., Guoxi X., Xi Y. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceram. Int. 2015; 41, 11498–11503.
Lisbona D., Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ 2011; 89, 434–442.
Yano Research Institute. Lithium-ion Battery Market: Cell & Components, 2011.
Lupi C., Pasquali M., Era A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical process. Waste Manage 2005; 25, 215–220.
Lupi C., Pasquali M. Electrolytic nickel recovery from lithium batteries. Miner. Eng. 2003; 16, 537–542.
Mishra D., Kim D. J., Ralph D. E., Ahn J. G., Rhee Y. H. Bioleaching of metals from spent lithium-ion batteries using acidithiobacillus ferrooxidans. Waste Manage 2008; 28, 333–338.
Manis K. J., Kumari A., Jha A. K., Kumari V., Hait J., Pandey B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manage 2013; 33, 1890-1897.
Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., Tripathi V. S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015; 151, 73–77.
Pranolo Y., Zhang W., Cheng C. Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system. Hydrometallurgy 2010; 102, 37–42.
Provazi K., Campos B. A., Espinosa D. C. R., Tenorio J. A. S. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage 2011; 31, 59–64.
Ritcey G. M., Ashbrook A. W., Solvent Extraction: Principles and Applications to Process Metallurgy. Elsevier Science Publishing Company, Inc., 1984.
Roussy G., Pearce J. A. Foundations and Industrial Applications of Microwave and Radiofrequency Fields. Phys. Chem. Pro. 1995; 10, 11–12.
Schwartzberg H. G. Leaching organic materials. Sep. Sci. Technol. 1987; 25, 540–577.
Shen Y., Xue W., Niu W., Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap. Trans. Nonferrous Met. Soc. China 2008; 18, 1262–1268.
Shin S. M., Kim N. H., Sohn J. S., Yang D. H., Kim Y. H. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 2005; 79, 172-181.
Sun L., Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 2012; 32, 1575-1582.
Swain B. J., Jeong J., Lee G., Lee J., Sohn J., Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. Power Sources 2007; 167, 536-544.
Tang W. J., Chen X. P., Zhou T., Duan H., Chen Y. B., Wang J. Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process. Hydrometallurgy 2014; 147, 210–216.
Thostenson E. T., Chou T. W. Microwave processing: fundamentals and applications. Composites Part A 1999; 30, 1055 – 1071.
Wang R. C., Lin Y. C., Wu S. H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 2009; 99, 194-201.
Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J. B., Liang J. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Power Sources 2008; 177, 512–527.
Xu J. T., Dou S. X., Liu H. K., Dai L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013; 2, 439–442.
Zhao J. M., Shen X. Y., Deng F. L., Wang F. C., Wu Y., Liu H. Z. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep. Purif. Technol 2011; 78, 345–351.
王志芳,磷酸鋰鐵電池之產業概況,台灣工業銀行內部報告,2008。
行政院環境保護署環境檢驗所,「土壤中重金屬檢測方法-王水消化法」,
NIEA S321.63B。
行政院環境保護署環境檢驗所,「事業廢棄物萃出液中重金屬檢測方法-酸消化法」,NIEA R306.13C 。
行政院環境保護署環境檢驗所,「感應耦合電漿質譜儀法」,NIEA M105.01B
余炳盛,臺灣稀有資源資源化技術現況,能資源整合技術圓桌論壇暨永續環境研討會,2013。
吳信達,王世忠,廢電池及廢料中資源再生提煉鈷配置鋰二次電池材料,資源與環境學術研討會,2003。
宏賴科技,網址:http://www.hstech.com.tw/products-d.html
李洪枚,姜亢,廢舊鋰離子電池對環境污染的分析與對策,上海環境科23卷第 5期,2004。
林偉凱,認識新一代電池材料:鋰金屬,金屬中心 MII產業分析師,2012。
林偉凱、蔡潔娃,「金屬資源再生產業技術發展概況分析」,經濟部技術處產業技術知識服務(ITIS)計畫,2009。
林福文,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期,2008。
柯賢文,《科學發展》482期,50 ~ 59頁,2013年2月。
許家興,電動車電池類型與電池基礎介紹,車輛沿測資訊(13-18),2009。
郭迺鋒、楊浩彥、林政勳、方文秀,鋰電池產業對台灣經濟發展影響的研究-投入產出方法的分析,2011。
陳志成、李清華、游智翔、鄭玠弦,廢鋰電池回收處理技術研究,行政院環境保護署應回收廢棄物回收處理創新研發成果發表會,2014。
陳金銘,穿戴式電子夯-高能量鋰電池材料技術居要角,工業材料雜誌338期,2015。
陳嘉隆,王佳琪,台灣鋰電池產業經營績效分析研究以資料包絡分析應用,2015。
游勝傑,盧美姿,綠色資源之循環再利用趨勢,永續產業發展季刊綠色能資源,2013。
黃可龍,王兆翔,劉素琴等,鋰電池結構鋰離子與電池原理,2010。
黃俊誠和陳藹然,電鍍(Electroplating),科技部科學ONLINE,2009。
黃俊誠和陳藹然,鋰電池(Lithium Battery),科技部科學ONLINE,2009。
黃樑傑,台灣動力鋰電池能量發展現況與挑戰,車輛中心,國合部,產業發展課,ARTC,2011。
楊奉儒、楊叢印、莊鉦賢、張良榕、王明祥,廢二次鋰電池資源再利用處理技術,環保科技園區第三屆研發計畫成果發表會,120-121,2010。
蔡明瞭、林民禾、杜景順、劉文龍,以電沉積法由廢鋰離子電池中回收有價金屬,綠色科技工程與應用研討會(GTEA),2013。
鋰電池反應示意圖,(Google圖片)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code