Responsive image
博碩士論文 etd-0707117-212650 詳細資訊
Title page for etd-0707117-212650
論文名稱
Title
海岸型鹹水濕地原生植栽與外來植栽溫室氣體排放特性之比較-以高美濕地為例
Comparison of Native and Exotic Vegetation on Greenhouse Gas Emission Fluxes from a Coastal Salted Wetland-Using Kaomei Estuary Wetland as an Example
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
204
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-01
繳交日期
Date of Submission
2017-08-08
關鍵字
Keywords
日夜變化、溫室氣體、連續監測、海岸型鹹水濕地、高美濕地、碳收支
global warming, coastal salted wetland, Greenhouse gases, Kaomei Estuary Wetland, diurnal variation
統計
Statistics
本論文已被瀏覽 5704 次,被下載 80
The thesis/dissertation has been browsed 5704 times, has been downloaded 80 times.
中文摘要
自工業革命後,人類社會快速發展,大量的空氣污染物被排放至大氣中,造成地球表面溫度不斷上升,大氣中溫室氣體濃度持續增加,使得溫室效應日益嚴重;隨著全球氣候暖化的加劇,對於海岸型鹹水濕地的功能越來越重視,濕地在全球暖化中扮演著重要的角色,因海岸濕地中的植物在生長過程中會釋放出二氧化碳(CO2)、甲烷(CH4)與氧化亞氮(N2O)等溫室氣體至大氣中。
本研究自2016年秋季至2017年夏季於台中高美濕地,針對濕地中原生種雲林莞草、蘆葦、鹽地鼠尾粟、外來種互花米草、泥灘和水面,利用開放式浮動氣罩進行溫室氣體24小時連續監測與碳收支研究,進一步分析溫室氣體的晝夜濃度變化、季節變化及空間分佈,並推估各樣區二氧化碳排放當量,以瞭解海岸型鹹水濕地對於全球暖化的貢獻程度。本研究亦彙整海岸濕地溫室氣體排放相關資訊與當地氣象資料及水質,並利用統計軟體進行水質及環境條件相關性分析與迴歸分析。將上述資料結合植物淨初級生產量及土壤碳儲存量,估算海岸型鹹水濕地的碳收支。
從本研究溫室氣體連續監測得知,CO2排放濃度(425.00±23.59 ~473.75±69.55 ppm)呈現日低夜高的趨勢,CH4排放濃度(2.15±0.35 ~3.27±1.30 ppm)呈現日高夜低的趨勢,N2O排放濃度(0.4±0.08 ~ 0.69±0.25 ppm)趨勢亦呈現出日高夜低的趨勢,將氣體連續監測結果與環境資料及水質進行相關性分析,結果顯示CO2的排放濃度與GSR (global solar radiation)及水溫呈負相關,CH4的排放濃度與N2O的排放濃度和氣溫、水溫呈中度正相關。
由CO2e估算結果顯示互花米草的CO2e(2345 mg CO2 m-2 yr-1 ) >雲林莞草的CO2e(1856 g CO2 m-2 yr-1 ),由溫室氣體排放通量發現互花米草的CO2、CH4及N2O的排放通量大於雲林莞草的CO2、CH4及N2O排放通量,且在四種植物當中擁有最高的CO2e,而N2O的GWP為265,在這三種溫室氣體(CO2、CH4、N2O)中的GWP明顯最高,故造成此情形。將海岸濕地植物碳收支加以彙整,雲林莞草的平均淨初級生產量為212.66 g C m-2 yr-1,鹽地鼠尾粟的平均淨初級生產量為438.75 g C m-2 yr-1,蘆葦的平均淨初級生產量為445.56 g C m-2 yr-1,互花米草的平均淨初級生產量為1044.79 g C m-2 yr-1;泥灘平均二氧化碳碳當量為46.15 g C m-2 yr-1,平均甲烷碳當量為0.91 g C m-2 yr-1,可得年平均有機碳吸存量330.51 g C m-2 yr-1。
由土壤碳庫推估結果發現,海岸型鹹水濕地土壤中的碳大多分佈於深度0~15 cm處。估算出雲林莞草的土壤碳儲存量為336.2 t C,鹽地鼠尾粟的土壤碳儲存量為141.2 t C、蘆葦的土壤碳儲存量為117.9 t C、互花米草的土壤碳儲存量為64.6 t C、泥灘的土壤碳儲存量為181.1 t C。
高美濕地的溫室氣體排放受到潮汐變化及當地生活污水排放的影響,從相關性分析可得知,CO2的吸收與產生主要與下列兩項因素有關:GSR的上升會促進光合作用的進行,使得CO2濃度降低,而水中微生物的好氧分解也是產生CO2的原因,在白天時CO2的排放濃度明顯低於夜晚,表示植物及藻類行光合作用所吸收的CO2大於好氧分解呼吸作用所釋出的CO2。甲烷化作用是濕地生成CH4的主要途徑,此反應作用需要微生物的參與,而水溫是微生物活性高低的重要因素,由相關性分析得知海岸濕地釋放CH4與水溫呈正相關。N2O主要為硝化與脫硝作用的中間產物,由相關性分析可得知水溫、氣溫、全天空日射量、溶氧、銨鹽及硝酸鹽均與海岸濕地的N2O排放濃度呈現中度正相關性,硝化與脫硝反應的主要反應物為硝酸鹽及銨鹽,且皆需要微生物的參與,因此水溫亦為海岸濕地排放N2O的主要因子。
Abstract
The rising of Earth's surface temperature for the past decades was attributed to the increasing concentrations of atmospheric greenhouse gases (GHGs), making the greenhouse effect more seriously. With the intensification of global warming, the coastal salted wetland has attracted more attention worldwide. Wetlands play an important role in global warming due to their ability to fix carbon and nitrogen in plants and sediments. However, the wetlands could release carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and other greenhouse gases into the atmosphere.
In this study, from the fall of 2016 to the summer of 2017 in Kaomei Estuary Wetland, the emission of greenhouse gases from Bolboschoenus planiculmis (BP), Phragmites australis (PA), Sporobolus virginicus (SV), Spartina alterniflora (SA), mudflat (MF), and water surface (WS) were measured by a self-designed open dynamic floating chamber to collect GHGs through a Teflon tube connected to the top of the chamber, and in-situ monitored GHGs with a continuous monitoring instrument (Teledyne Analytical Instruments, Series 7600) for 24-hr GHG emissions. Furthermore, the study further investigated the seasonal variation and spatial distribution and estimated CO2 equivalent (CO2-e) and carbon budget to identify the contribution of global warming from coastal salted wetland. This study also correlated greenhouse gas emissions, meteorological data, and water quality. We further calculate the net primary production and soil carbon sequestration to estimate the carbon budget of coastal salted wetland. The concentration of CO2 increased when the sediments were exposed to the air because aerobic respiration could enhance CO2 production. The photosynthesis of vegetation had significant impact on the emission of CO2 and N2O, since the vegetation can uptake CO2 from the atmosphere, while the vegetation need to uptake nitrogen for growth, thus N2O was uptaken. Biomass debris also play an important role on the emission of GHGs, after the plant died, it then become organic carbon, and stimulate CH4 emitted. Further analysis of seasonal variation of greenhouse gases and diurnal variation of their concentration were conducted, and estimates of CO2 equivalent to understand the impact of GHGs emitted from coastal salted wetlands on global warming.
Continuous monitoring of GHGs showed that the diurnal variation of CO2 concentrations (425.00 ± 23.59 ~ 473.75 ± 69.55 ppm) at nighttime were higher those in the daytime. An opposite trend was observed for CH4 concentrations (2.15 ± 0.35 ~ 3.27 ± 1.30 ppm) and N2O concentrations (0.4 ± 0.08 ~ 0.72±0.20 ppm). Correlation analysis results showed that CO2 concentration was negatively correlated with global solar radiation (GSR) and water temperature. The CH4 concentration was positively correlated with air temperature and water temperature. The N2O concentration was positively correlated with Ammonium and nitrate.
The entire tidal flat was a net source of GHGs during the different seasons investigated, the CO2-e of Spartina Alterflora (2345 g CO2 m-2 y-1) > Phragmites communis (2302 g CO2 m-2 y-1) > water surface (2043 g CO2 m-2 y-1) > Sporobolus virginicus (1971 g CO2 m-2 y-1) > Bolboschoenus planiculmis (1856 g CO2 m-2 y-1 ) > mudflat (1817 g CO2 m-2 y-1), the CO2, CH4 and N2O fluxes of Spartina alterniflora were higher than all of the Plants we measured and have the highest CO2-e.
The average net primary production of Bolboschoenus planiculmis, Sporobolus virginicus, Phragmites communis, and Spartina alterniflora were 212.66 g C m-2 yr-1, 438.75 g C m-2 yr-1, 445.56 g C m-2 yr-1, 1044.79 g C m-2 yr-1. This study also calculated the carbon budget of Kaomei Estuary Wetland, the average of CO2 carbon equivalent from mudflat was 46.15 g C m-2 yr-1, and the average of CH4 carbon equivalent was 0.91 g C m-2 yr-1, after calculation, the annual average carbon budget of Kaomei Estuary Wetland was 330.51 g C m-2 yr-1.
Soil carbon stock showed that soil carbon was mostly distributed in the soil depth of 0~15 cm in the coastal salted wetlands. Soil carbon stocks of Bolboschoenus planiculmis, Sporobolus virginicus, Phragmites communis, and Spartina alterniflora was 336.2 t C, 141.2 t C, 117.9 t C, 64.6 t C, and the soil carbon stocks of mudflat was 181.1 t C.
The emission of GHGs in the Kaomei Estuary Wetland were affected by tidal change and local sewage discharge. The uptake and production of CO2 were mainly related to two factors: (1)the increase of GSR (global solar radiation) could accelerate photosynthesis, and (2)the aerobic decomposition of microorganisms promote CO2 emission. In the daytime, CO2 concentrations were significantly lower than those at nighttime, indicating that the photosynthesis of plants and algae absorbed more CO2 than the emission of CO2 by respiration. Methanation is the main pathway for the formation of CH4 in wetlands. This reaction required the participation of microorganisms, and the water temperature was an important factor for the microbial activity. Correlation analysis showed that the release of CH4 from the wetland was positively correlated with the water temperature. N2O is the main intermediate product of both nitrification and denitrification. Water temperature, air temperature, GSR, dissolved oxygen(DO), ammonium(NH3-N), and nitrate(NO3--N) were moderate positive correlation with N2O concentraiotn. The main reactants of nitrification and denitrification were nitrate and ammonium, and both reactions required the participation of microorganisms. Therefore, water temperature is the main factor for the emission of N2O in coastal salted wetlands.
目次 Table of Contents
目錄
學位論文審定書………………………………………………………………………i
誌謝……………………………………………………………………………………ii
中文摘要……………………………………………………………………………....iii
英文摘要………………………………………………………………………….…...v
目錄………………………………………………………………………………........viii
圖目錄………………………………………………………………………………....xi
表目錄…………………………….………………...…………...…………...………..xiii
第一章 前言…………………………………………………………………………..1
1.1研究緣起……………………………………………………………………..1
1.2研究目的……………………………………………………………………..2
1.3研究架構……………………………………………………………………..4
第二章 文獻回顧……………………………………………………………………..5
2.1濕地的定義與種類…………………………………………………………..5
2.1.1濕地的基本定義……………………………………………………………...5
2.1.2濕地的種類…………………………………………………………………...9
2.2溫室氣體的背景…………………………………………………………….18
2.2.1溫室氣體的排放來源………………………………………………………..18
2.2.2溫室氣體排放現況…………………………………………………………..21
2.2.3濕地產生溫室氣體的機制…………………………………………………..25
2.3濕地碳收支………………………………………………………………….26
2.3.1濕地環境的碳循環…………………………………………………………..26
2.3.2全球碳收支及濕地碳匯……………………………………………………..29
2.4國內外濕地溫室氣體排放相關研究……………………………………….33
2.5濕地溫室氣體交換通量量測技術比較…………………………………….34
第三章 研究方法…………………………………………………………………….37
3.1採樣規劃…………………………………………………………………….37
3.1.1高美濕地採樣規劃…………………………………………………………..37
3.1.1.1 雲林莞草………………………………………………………………..39
3.1.1.2 鹽地鼠尾粟……………………………………………………………..39
3.1.1.3 蘆葦……………………………………………………………………..40
3.1.1.4 互花米草………………………………………………………………..41
3.1.2 採樣時間規劃………………………………………………………………….41
3.2碳收支量測與採樣方法…………………………………………………….42
3.2.1溫室氣體在線連續監測……………………………………………………..42
3.2.2植栽量測及採樣方法………………………………………………………..44
3.2.3土壤採樣方法………………………………………………………………..45
3.3碳收支分析方法與步驟…………………………………………………….46
3.3.1溫室氣體排放碳當量分析方法……………………………………………..46
3.3.2淨初級生產量分析方法……………………………………………………..47
3.3.3土壤碳庫分析方法…………………………………………………………..48
3.3.4碳收支計算…………………………………………………………………..52
3.4溫室氣體排放與水質參數及環境條件相關性分析……………………….53
第四章 結果與討論…..………………………………………………………...……54
4.1採樣期間高美濕地環境與氣象條件……………………………………….54
4.1.1環境概況……………………………………………………………………..54
4.1.2氣象條件現況………………………………………………………………..54
4.2 海岸濕地溫室氣體濃度變化趨勢……………………………………...….62
4.2.1 高美濕地排放CO2濃度變化趨勢………………………………………...62
4.2.2高美濕地排放CH4濃度變化趨勢…………………………………………68
4.2.3高美濕地排放N2O濃度變化趨勢…………………………………………75
4.3 海岸濕地溫室氣體通量變化趨勢 ……………………………………………...80
4.3.1高美濕地排放CO2排放通量變化趨勢……………………………………81
4.3.2高美濕地排放CH4排放通量變化趨勢……………………………………84
4.3.3高美濕地排放N2O排放通量變化趨勢……………………………………88
4.3.4 與全球海岸濕地溫室氣體排放通量比較…………………………..….92
4.4溫室氣體與水質及環境參數的相關性分析……………………………….93
4.4.1溫室氣體與水質資料的雷達圖分析………………………………………..96
4.4.2溫室氣體與水質資料的三相圖分析………………………………………..99
4.4.3 溫室氣體與水質資料多項性迴歸分析…………………………………….101
4.5全球暖化效應影響推估…………………………………………………….104
4.6淨初級生產量……………………………………………………………….105
4.6.1海岸濕地淨初級生產量……………………………………………………..105
4.7碳吸存通量推估…………………………………………………………….107
4.8濕地土壤碳庫估算………………………………………………………….109
4.8.1土壤碳含量…………………………………………………………………..109
4.8.2土壤碳密度…………………………………………………………………..111
4.8.3海岸濕地土壤碳儲存量……………………………………………………..112
第五章 結論與建議…………………………………………………………..…...…114
5.1 結論…………………………………………………………………………114
5.2 建議…………………………………………………………………………117
參考文獻………..…………………………………………………………………….118
附 錄A連續監測儀標準品分析…………………………..………………………..128
附 錄B溫室氣體監測數據……………………………..…………………………..131
附 錄C植物淨初級生產量數據………………..………………………………..…162
附 錄D水質連續監測數據………………..………………………………………..164
參考文獻 References
參考文獻
Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W., “Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine,” Coastal and Shelf Science, 63(4), 605-618, 2005.
Anderson, C. J., & Mitsch, W. J., “Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes,” Wetlands, 26(3), 779-792, 2006.
Bartlett, K. B., & Harriss, R. C. “Review and assessment of methane emissions from wetlands,” Chemosphere, 26(1-4), 261-320, 1993.
Bouillon, S., Raman, A. V., Dauby, P., & Dehairs, F. “Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an Estuarine Mangrove Ecosystem (Andhra Pradesh, India), ” Estuarine, Coastal and Shelf Science, 54(5), 901–13, 2001.
Brix, H., Sorrell, B. K., & Lorenzen, B. “Are phragmites-dominated wetlands a net source or net sink of greenhouse gases ?” Aquatic Botany, 69(2-4), 313–324, 2001.
Burden, A., Garbutt, R. A., Evans, C. D., Jones, D. L., & Cooper, D. M., “Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine,” Coastal and Shelf Science, 120, 12-20, 2013.
Chen, G. C., Tam, N. F., & Ye, Y., “Spatial and seasonal variations of atmospheric N2 O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics,” Soil Biology and Biochemistry, 48, 175-181, 2012.
Chen, Y., Chen, G., & Ye, Y., “Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation,” Science of the Total Environment, 526, 19-28, 2015.
Cheng, X. L., Luo, Y. Q., Chen, J. Q., Lin, J. H., Chen, J. K., Li, B., ” Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island,” Soil Biology & Biochemistry 38, 3380–3386, 2006.
Chmura, G.L., “Tidal Salt Marshes. In: Laffoley, D.d’ A. and Grimsditch, G. (eds),”
The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53
pp, 2009.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. “Global carbon sequestration in tidal, saline wetland soils,” Global Biogeochemical Cycles, 17(4), 12, 2003.
Cicerone, R. J., & Oremland, R, S., “Biogeochemical aspects of atmospheric methane,” Global Biogeochemical Cycles, 299–327, 1988.
Daelman, M. R., van Voorthuizen, E. M., van Dongen, U. G., Volcke, E. I., & van Loosdrecht, M. C., “Methane emission during municipal wastewater treatment,” Water Research, 46(11), 3657-3670, 2012.
Delaune, R., Smith, C., Patrick, JR. W.H., “Methane release from Gulf Coast wetlands,” Tellus 35B, 8-15, 1983.
Ding, W., Cai, Z., Tsuruta, H., & Li, X., “Key factors affecting spatial variation of methane emissions from freshwater marshes,” Chemosphere, 51(3), 167-173, 2003.
El-Fadel, M. & Massoud, M. “Methane emissions from wastewater management,” Environmental Pollution, 114(2), 177–185, 2001.
Emery, H. E., & Fulweiler, R. W., “Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh,” Aquatic Botany, 116, 83-92, 2014.
Fennessy, S., & Nahlik, A., “Carbon storage in US wetlands,” Nature Communications, 7, 2016.
Franzen, L. G., “Can Earth afford to lose the wetlands in the battle against the increasing greenhouse effect,” In International Peat Society Proceedings of International Peat Congress (pp. 1-18), Uppsala, 1992.
Gorham, E., “Northern peatlands: role in the carbon cycle and probable responses to climatic warming,” Ecological applications, 1(2), 182-195, 1991.
Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H., “Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia,” Nutrient Cycling in Agroecosystems, 71(1), 73-80, 2005.
Hirota, M., Senga, Y., Seike, Y., Nohara, S., & Kunii, H. “Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan,” Chemosphere, 68(3), 597–603, 2007.
Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., & Mariko, S. “Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland,” Soil Biology and Biochemistry, 36(5), 737–748, 2004.
Inamori, R., Gui, P., Dass, P., Matsumura, M., Xu, K. Q., Kondo, T., ... & Inamori, Y., “Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms,” Process Biochemistry, 42(3), 363-373, 2007.
Johansson, A. E., Gustavsson, A. M., Öquist, M. G., & Svensson, B. H., “Methane emissions from a constructed wetland treating wastewater—seasonal and spatial distribution and dependence on edaphic factors,” Water research, 38(18), 3960-3970, 2004.
Jones, W. M., Fraser, L. H., & Curtis, P. J., “Plant community functional shifts in response to livestock grazing in intermountain depressional wetlands in British Columbia, Canada,” Biological Conservation, 144(1), 511-517, 2011.
JØrgensen, C.J., Struwe†, S., & Elberling, B., “Temporal trends in N2O flux dynamics in a Danishwetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral- N availability,” Global Change Biology, 18, 210–222, 2012.
Katy, H. Katy-Cypress. “Wetland Mitigation Bank,” 1999.
Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å., “Carbon storage and fluxes within freshwater wetlands: A critical review,” Wetlands, 30(1), 111-124, 2010.
Khalia, M. A. K., Shearer, M. J., & Rasmussen, R. A., CH4 sink and distribution in atmospheric CH4: sources, sink, and role in global change. NATO ASI Series, 168-179, 1993.
Kirwan, M. L., Langley, J. A., Guntenspergen, G. R., & Megonigal, J. P., “The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes,” Biogeosciences, 10(3), 1869-1876, 2013.
Kirwan, M. L., & Megonigal, J. P., “Tidal wetland stability in the face of human impacts and sea-level rise,” Nature, 504(7478), 53-60, 2013.
Koelbener, A., Ström, L., Edwards, P. J., & Venterink, H. O., “Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil,” Plant and Soil, 326(1-2), 147-158, 2010.
Krithika, K., Purvaja, R., & Ramesh, R., “Fluxes of methane and nitrous oxide from an Indian mangrove,” Current Science, 94(2), 218-224, 2008.
Liikanen, A., Huttunen, J. T., Karjalainen, S. M., Heikkinen, K., Väisänenb, T. S., Nykänena, H., Martikainena, P. J., “Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters,” Ecological Engineering, 26, 241-251, 2006.
Liu, X., Li, L., Qi, Z., Han, J., & Zhu, Y., “Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China,” Science of The Total Environment, 586, 1038-1045, 2017.
Lunstrum, A., & Chen, L., “Soil carbon stocks and accumulation in young mangrove forests,” Soil Biology and Biochemistry, 75, 223-232, 2014.
Magenheimer, J.E., Moore, T.R., Chmura, G.L., Daoust, R.J., “Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy,” New Brunswick.
Estuaries 19, 139-145,1996.
Malmer, N., 3.1. Development of Bog Mires. Coupling of Land and Water Systems, 10, 83-103, 1975.
Marín-Muñiz, J. L., Hernández, M. E., & Moreno-Casasola, P., “Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: Effect of plant community and seasonal dynamics,” Atmospheric Environment, 107, 107-117, 2015.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., & Silliman, B. R., “A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2,”Frontiers in Ecology and the Environment, 9(10), 552-560, 2011.
Mitsch, W. “Ecological engineering a cooperative role with the planetary life-support system,” Environmental Science & Technology, 27(3), 438-445, 1993.
Mitsch, W. J. & Gosselink, J. G. “Wetlands.” John Wiley & Sons, Inc 177-18, 2007
Mitsch, W. J., & Wu, X., “Wetlands and global change,” pp, 205-230, Boca Raton, CRC Lewis Publishers, 1995.
Moore, P. D. & Bellamy, D. J., “Peatlands (p. 221). London: Elek science, 1974.
Nichols, D.S., “Capacity of natural wetlands to remove nutrients from wastewater,” Water Environment Federation, 55(5), 495-505, 1983
Nordhaus, I., Salewski, T., & Jennerjahn, T. C., “Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia,” Journal of Sea Research, 65(4), 414-426, 2011.
Petersen, N. R. & Jensen, K., “Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L,” Limnology and Oceanography, 42(3), 529-537, 1997.
Roulet, N. T., “Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada,” Wetlands, 20(4), 605-615, 2000.
Sánchez-Andrés, R., Sánchez-Carrillo, S., Alatorre, L. C., Cirujano, S., & Álvarez-Cobelas, M., “Litterfall dynamics and nutrient decomposition of arid mangroves in the Gulf of California: Their role sustaining ecosystem heterotrophy,” Estuarine, Coastal and Shelf Science, 89(3), 191-199, 2010.
Schubauer, J. P. & Hopkinson, C. S., “Above‐and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia,” Limnology and Oceanography, 29(5), 1052-1065, 1984.
Segers, R., “Methane production and methane consumption: a review of processes underlying wetland methane fluxes,” Biogeochemistry, 41(1), 23-51, 1998.
Smith, C.J., Delaune, R.D., Patrick, JR. W.H., “Carbon dioxide emission and carbon accumulation in coastal wetlands,” Estuarine Coastal and Shelf Science,17:21-29, 1983.
Tanner, C.C., “Plants as ecosystem engineers in subsurface-flow treatment wetlands,” Water Science Et Technology, 44(11-12), 9-17, 2001.
Tong, C., Wang, W. Q., Huang, J. F., Gauci, V., Zhang, L. H., & Zeng, C. S., “Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland,” Biogeochemistry, 111(1-3), 677-693, 2012.
Trumbore, S.E., Bubier, J.L., Hander, J.W., & Grill, P.M., “Carbon cycling in boreal wetlands: A comparison of three approaches,” Journal of Geophysical Research, 104(22), 27,673-27, 682, 1999.
Wang, Y., Inamori, R., Kong, H., Xu, K., Inamori, Y., Kondo, T., & Zhang, J., “Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations,” ecological engineering, 32(1), 22-29, 2008.
Xi, X., Wang, L., Tang, Y., Fu, X., & Le, Y., “Response of soil microbial respiration of tidal wetlands in the Yangtze River Estuary to increasing temperature and sea level: A simulative study,” Ecological Engineering, 49, 104-111, 2012.
Xu, X., Zou, X., Cao, L., Zhamangulova, N., Zhao, Y., Tang, D., & Liu, D., “Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China,” Ecological Engineering, 73, 469-477, 2014.
Yang, W. B., Yuan, C. S., Tong, C., Yang, P., Yang, L., & Huang, B. Q., “Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland,” Marine Pollution Bulletin, 2017.
Yang, W., Li, N., Leng, X., Qiao, Y., Cheng, X., & An, S., “The impact of sea embankment reclamation on soil organic carbon and nitrogen pools in invasive Spartina alterniflora and native Suaeda salsa salt marshes in eastern China,” Ecological Engineering, 97, 582-592, 2016.
Yin, S., An, S., Deng, Q., Zhang, J., Ji, H., & Cheng, X., “Spartina alterniflora invasions impact CH 4 and N 2 O fluxes from a salt marsh in eastern China,” Ecological Engineering, 81, 192-199, 2015.
Zhang, G., Zhang, J., Xu, J., & Zhang, F., “Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay,” Estuarine, Coastal and Shelf Science, 68(3), 557-566, 2006.
Zhu, T. & Sikora, F.J. “Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands,” Water Science and Technology, 32(3), 219-228, 1995.
行政院農委會,“自然保育通訊,第十三期”,1987。
內政部營建署城鄉發展分屬,“100年國家重要濕地碳匯功能調臺標準作業程序”,2011。
行政院環境保護署,”中華民國國家溫室氣體清冊報告”,2015。
許晃雄,“淺談氣候變遷的科學”,科學發展月刊,第29卷,第12期,867-887,2001。
李海濤、王紹強,“全球變化與陸地生態統碳循環和碳蓄積”,氣象出版社,2003。
楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東,“台灣河川湖泊濕地甲烷及氧化亞氮排放量測”,全球變遷通訊雜誌 40: 5940: 5940: 5940: 59 40: 59-71,2003 。
卓盟翔,“影響雲林莞草發芽與生長之環境因子探討”,國立中興大學生命科學系碩士論文,2007。
賴建志,“人工濕地之甲烷及氧化亞氮釋放研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2008。
李勇、劉敏、陸敏、侯立軍、林嘯,“崇明東灘蘆葦濕地氧化亞氮排放”,環境科學學報,2010。
莊建和,“人工濕濕地碳收支平衡及碳匯能力之研究”,,嘉南藥理科技大學環境與工程與科學系碩士論文,2010。
方培安,“使用不同介質的表面下流動式人工濕地去除金屬加工業廢水有機物和營養鹽之研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。
廖璟郡,“新竹香山濕地植物之碳吸存量”, 國立中興大學生命科學系碩士論文,2012。
何佳穎,“南台灣紅樹林濕地碳吸存能力之調查及估算”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。
陳家璽,“南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。
林瑩峰、陳國超,“濕地與全球暖化”,台灣濕地保護聯盟,2012。
童莉婷,“高美濕地土壤碳存量之時空變化”,國立中興大學生命科學系碩士論文,2013。
劉文治,“大氣中揮發性有機物與溫室氣體監測模式估算”,國立中央大學化學學系博士論文,2013。
袁俊吉、項劍、劉德燕、林永新、丁維新,“互花米草入侵鹽沼濕地CH4和N2O排放日變化特徵研究”,生態環境學報,23(8),1251-1257,2014。
李世博,“台南七股紅樹林碳收支模式”,國立中興大學生命科學系碩士論文,2015。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code