Responsive image
博碩士論文 etd-0707118-100133 詳細資訊
Title page for etd-0707118-100133
論文名稱
Title
具尿素化學鍵的多孔洞材料於油水分離和廢汙水處之應用
Oil/Water Separation and Waste Water Treatment by Porous Materials with Urea Bond
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-18
繳交日期
Date of Submission
2018-08-07
關鍵字
Keywords
超疏水性、油水分離材料、三聚氰胺海綿、尿素化學、聚二甲基矽氧烷、重金屬、鉛離子、尿素多孔洞材料、二氧化碳捕捉、吸附材料
adsorbent material, CO2 capture, Pb(II), heavy metal, Urea porous polymer, oil absorbent materials, PDMS, urea chemistry, melamine sponge, Superhydrophobicity
統計
Statistics
本論文已被瀏覽 5620 次,被下載 1
The thesis/dissertation has been browsed 5620 times, has been downloaded 1 times.
中文摘要
中文摘要-1
本研究提出,具優異、簡單製造,低成本效益且具可擴展性的尿素交聯反應來開發出具有超疏水性質的三聚氰胺海綿,作為高效率的吸附材料應用於油水分離及有機溶劑的吸附。首先,本實驗提出一個簡易改質聚二甲基矽氧烷(PDMS)的方法,將兩倍莫爾數的二異氰酸酯(NCO)與尾端兩端具有胺基之PDMS加熱以進行PDMS之尾端封裝反應,再進一步加熱硬化形成交聯網狀結構,得到具柔軟性,疏水和親油性的薄膜,此種利用尾端NCO及二級胺基修飾PDMS,雖為傳統尿素化學,但卻無人注意及加以應用。然而我們選擇在商業化的三聚氰胺海綿上進行塗佈和固化過程,在海綿骨架中二級胺與PDMS尾端封裝NCO形成尿素共價鍵結所得超疏水海綿吸脫附材料來作為油和溶劑與水的分離。獲得的聚脲塗層海綿展現優異的水接觸角153.4o並具有優越的吸油能力及溶劑的可選擇性,特別在體積吸收比上能夠吸附 (1.163 ~ 1.661 m3/m3)的油汙染及溶劑,且具有良好的可回收性,可多達30次吸脫附仍能保持在 85.7~98.7% 的吸附量,原因也取決於所使用之有機溶劑和油的密度。接著,經過各種標準的化學和物理侵蝕,材料仍能完好,且具抗濕性、堅固、可回收性高能有效地分離廢水汙染。因此本研究在現今快速發展綠色化學環境中,提供相當大潛在力、吸引力及前瞻性的材料應用於環境清理及修補上。
中文摘要-2
首先,透過尿素反應將N1,N1二(4-氨基苯基)苯-1,4-二胺(TPA3NH2)和兩種二或三官能基數的異氰酸酯單體在甲苯和四氫呋喃混合溶劑環境下進行交聯製備出具有在水溶液中吸附重金屬離子的新型尿素聚合物多孔洞材料(UPP),其為U2和U3。在掃描式電子顯微鏡的觀察下,平均直徑為0.3-1.0μm的UPP微球具有均勻皺紋狀的形貌和球型。其表面經尿素鍵修飾後表面穩定,有利於金屬離子的捕獲。通過固態13C NMR、FTIR、XRD、XPS、BET和TGA等技術對其化學組成和熱性質進行分析。以U3為例,其定量結果主要包括異氰酸酯2265 cm-1的消失,比表面積分析(114.2 m2/g),二氧化碳捕捉(1.89 mmole/g),孔徑(8.56 nm)和質量損失碳收率(43%),其代表合成成功,結構明確,熱穩定性好。接著利用U3材料進一步,在不同pH值、吸附時間和初始濃度下進行Pb(II)在水溶液下吸附試驗,且展現出優異的吸附能力。通過配方計算的最大的吸附量為129 mg Pb(II)/g,高於大多數可用的吸附材料吸附量。此外本實驗也提出了幾種和金屬離子可能性的鍵結模式或是吸附位點。此外,我們將UPP進行氫氧化鉀化學活化,進而得到aU3。其整體增強熱穩定性(58%),比表面積分析(1483.8 m2/g)和高二氧化碳捕捉能力(4.21 mmole/g)的優越效果。總體而言,尿素多孔洞材料不僅具有高比表面積和孔隙體積且在氣體儲存上是具有潛力的環保材料,而對於重金屬離子Pb(II)的吸附性能可以用於廢水淨化,在綠色環保新型材料中嶄露頭角。
Abstract
Abstract-1
A facile, cost-effective, and scalable “urea cross-linking reaction” was developed to fabricate superhydrophobic melamine sponge (SMS) as efficient oils- and organic solvents-absorbent material. Primarily, a readily-available key intermediate of isocyanate-terminated poly(dimethyl siloxane) (iPD) was heated to proceed crosslinking reaction, generating flexible, hydrophobic films with urea cross-linking points. Moreover, this key iPD can be used to modify melamine sponge (MS), by heating to have its isocyanate terminals react with the secondary amine groups of MS, rendering covalent urea bonds over the surface of MS skeleton. The resultant SMS exhibits a high water contact angle (WCA) of 153.4o and excellent volumetric absorption capacity (1.163 ~ 1.661 m3/m3) for different oils and organic solvents and can be repeatedly used for 30 sorption-squeezing cycles with high absorption capacity retention (85.1 ~ 98.7 %), depending on the polarity and density of the employed organic solvents and oils, and high selectivity. This property of the material remains intact even after various standard chemical and physical insults. The fabrication procedure of SMS is simple and cost-effective and the anti-wetting, robust, recyclable SMS is efficient in the separation of various oils and organic solvent/water mixtures, therefore, this study provides attractive and potential methodology for use in scalable environmental cleanup and remediation.
Abstract-2
A novel adsorbent, urea porous polymer (UPP), for uptake of heavy metal ions from aqueous solutions was first fabricated via cross-linking reaction N1,N1-Bis(4-aminophenyl)benzene-1,4-diamine (TPA3NH2) and two or three functional isocyanate groups into toluene and tetrahydrofuran (THF) co-solutions, U2 and U3. The UPP microspheres of 0.3-1.0 μm in mean diameter were of uniformly wrinkle-like topography and sphere-like sketched out by SEM, whose surface after decoration by urea linkage was stable and beneficial to metal ion capture. Its chemical composition, microstructure, and thermal property were characterized by solid state 13C NMR, FTIR, XRD, XPS, BET, and TGA techniques, take U3 for example, the achieved quantitative results mainly included disappearance of isocyanate 2265 cm-1, specific surface area (114.2 m2/g), CO2 capture (1.95 mmole/g) pore diameter (8.56 nm), and mass loss at the char yield (43%), which indicated a successful synthesis, well-defined structure, and good thermos ability. Adsorption tests of U3 were performed in Pb(II) solutions at various pH values, contact time, and initial concentrations, exhibiting an excellent adsorption capability. Its maximum adsorption capacity calculated by formula was 129.7 mg Pb(II)/g, which was higher than those of most available adsorbents. Additionally, several potential bonding modes and adsorption sites for both metal ions were also proposed. Furthermore, the aU3 exhibited excellent thermal properties (58%), BET analysis (1483.8 m2/g) and CO2 capture (4.21 mmole/g). Overall, UPP materials not only with large surface areas and pore volumes are environmentally friendly materials having great potential in gas storage (CO2) applications but also with outstanding adsorption performance toward Pb(II) might serve as a new absorbent for wastewater purification.
目次 Table of Contents
論文審定書…………………………………………………. i
誌謝…………………………………………………. ii
Chinese Abstract-1…………………………………………………. iii
English Abstract-1…………………………………………………………………….iv
Chinese Abstract-2……………………………………………… vi
English Abstract-2………………………………………………………………….. vii
Outline of contents…………………………………………………………………...vii
List of Figure……………………………………………………………………... ...ix
List of Scheme……………………………………………………………………... xvi
List of Table…………….…………………………………………………..............xvii
Chapter 1. Superhydrophobic Melamine Sponge Modified by Cross-Linked Urea Network as Recyclable Oil Absorbent Materials 1
1-1. Introduction 2
1-2. Experimental Section 6
1-2-1. Materials 6
1-3. Characteristic 8
1-4. Result and Discussion 11
1-5. Conclusion 32
1-6. References 33
Chapter 2. Effective CO2 Capture and Lead(II) Uptake of Porous Materials Derived from Cross-linked Urea Networks 43
2-1. Introduction 44
2-2. Experimental Section 49
2-2-1. Materials 49
2-3. Characteristic 52
2-4. Result and Discussion 56
2-5. Conclusion 78
2-6. References 80
Supporting information 89

List of Figure
Figure 1-1. (a) 1H-NMR spectra of aPD5K and iPD5K (CDCl3) and (b) FTIR spectra of iPD5K and cPD5K (panel: magnified amide carbonyl bands). 13
Figure 1-2. (a) Water droplets on the surfaces of cPD5K and cPD27K films and the resolved WCAs, and (b) the 2D and 3D AFM images of cPD5K and cPD27K films. 16
Figure 1-3. (a) XPS spectra of the unmodified MS, SMS27K and SMS27K after 30 compression cycles and (b) TGA curves of MS, SMS27K and cPD27K (heating rate = 10 oC/min). 18
Figure 1-4. SEM images of (a, b) unmodified MS and (c, d) SMS27K. 21
Figure 1-5. (a) Unmodified MS (white color) and modified SMS27K (light orange color) after being forced into contact with water (inset: partially-immersed SMS27K with silver mirror-like appearance), (b) acidic, salty and alkali water droplets on the surface of SMS27K (all water droplets had been placed on SMS27K for over 12 hr) and (c) water droplets of different temperatures and trace of lubricant oil on the surface of SMS27K. 23
Figure 1-6. (a, b) Snapshots showing the absorption of oil (dyed in red) from water, the extruded liquids from (c) SMS27K and (d) MS saturated with absorbed oil/water… 25
Figure 1-7. (a) SMS27K as filter for continuous separation of hexane/water emulsion in a vacuum suction apparatus. Photographs of (b) surfactant-stabilized and (c) surfactant-free water-in-hexane emulsions. The distinct appearance between the feed emulsion and the hexane filtrate under normal and optical images. 27
Figure 1-8. (a) Gravimetric absorption capacities (g/g) of SMS27K for different oils and organic solvents and (b) the corresponding gravimetric absorption capacities at 30 sorption-squeezing cycles. 30
Figure 2-1. FTIR spectra of (a) U2, MDI and TPA3NH2, (b) U3, TPA3NCO, TPANH2, (c) U2 and aU2 and (d) U3 and aU3. 59
Figure 2-2. The Raman spectra of the aU2 and aU3. 60
Figure 2-3. TGA of the U2, U3, aU2 and aU3 under a N2 atmosphere. (heating rate 20 oC/min) 61
Figure 2-4. (a) XPS spectra of C 1s, N 1s and O 1s orbitals. (b, c) deconvolution of N 1s and O 1s for aU2, (d, e) for aU3. 63
Figure 2-5. Comparison of the N2 adsorption isotherms at 77K (a) U2, U3, aU2 and aU3. (b) pore size (inset: aU2 and aU3 micropore sizes detected by CO2 adsorption.)… 65
Figure 2-6. CO2 capture using the U2, U3, aU2 and aU3 at 298 K. 66
Figure 2-7. (a) Effects of initial pH, (b) contact time, (c) initial concentration and (d) results of five adsorption−desorption cycles on adsorption of U2 and U3 for Pb(II). (a: initial ion concentration 250 mg/L, contact time 6hr, sample dosage 1g/L, temperature 25 oC, stirring speed 200 rpm; b: initial ion concentration 250 mg/L, initial pH 6.0, sample dosage 1g/L, temperature 25 oC stirring speed 200 rpm; c: initial pH 6.0, contact time 6hr, sample dosage 1g/L. d: initial concentration 250 mg/L, initial pH 6.0, contact time 6hr, sample dosage 1 g/L, temperature 25 °C, stirring speed 200 rpm.)……. 71
Figure 2-8. High-resolution XPS spectra survey of primitive UPP and Pb(II) adsorption surface. (b) Pb 4f spectra of Pb(II) adsorbed UPP and Pb(II). (c), (d) N 1s spectra of U2-Pb(II) and U3-Pb(II). (e), (f) O 2p spectra of U2-Pb(II) and U2-Pb(II)….. 74
Figure 2-9. (a) FTIR spectra of U2 and U3 before adsorption and after five-time absorption for Pb(II) at C=O-NH amide II bonding and (b) secondary amino group on urea linkage.. 76
Figure 2-10. SEM images of (a) U2, (b) U3. (c) U2-Pb(II) and (d) U3-Pb(II) after five-time adsorption... 77
Figure S1-1. Schematic illustrations of (a) coordination interactions between the “Urea chemistry” and secondary amine group in SMS and (b) corresponding hydrophilic to hydrophobic transition of the melamine sponge. 90
Figure S1-2. (a) Appearance of uncured iPD5K slurry and the homogeneous cured cPD5k film and (b) UV-vis spectra of cPD5K and cPD27K films, and photographs of cPD5K and cPD27K films showing the flexibility and transparency of the films. 91
Figure S1-3. Stress/strain curves of cured (a) cPD5K and (b) cPD27K. 92
Figure S1-4. Gravimetric absorption capacities G (g/g) of cPD5K and cPD27K films for different organic solvents (left) and oils (right) by its swelling property. 92
Figure S1-5. Appearances and WCAs of modified SMS5K and SMS27K films. 93
Figure S1-6. Variations in WCA on the SMS27K with immerse time in hexane at ambient time. (inset: The water sliding angle (= 10o) of SMS27K.) 93
Figure S1-7. The WCA hysteresis of SMS27K. 94
Figure S1-8. Snapshots showing the process of selective absorption of chloroform (dyed in red) from water. 95
Figure S1-9. Transmittance of feed emulsion solution and hexane filtrate from the continuous separation of surfactant-stabilized/free hexane-in-water emulsion. 96
Figure S1-10. Photographs of after 30 sorption-squeezing cycles for (a) chloroform (b) hexane, (c) hexadecane, (d) toluene, (e) lubricant oil, (f) motor oil and (g) edible oil droplets (all water droplets are dyed in yellow) on the surfaces of SMS27K. 96
Figure S2-1. Synthesis process, (a) 1H NMR spectra and (b) FTIR spectra of TPA3NO2, TPA3NH2 and TPA3NCO. 98
Figure S2-2. MALDI-TOF mass spectra of TPA3NH2 and TPA3NCO. 98
Figure S2-3. Solid state 13C NMR of U2, U3, aU2 and aU3. 99
Figure S2-4. SEM image of KOH-activation of (a) aU2 and (b) aU3. 100
Figure S2-5. (a) FTIR spectra (b) XRD spectra of U2 and U3 and after adsorption of Pb(II), U2-Pb(II) and U3-Pb(II). 100
Figure S2-6. (a) the absorbance of Pb(II) at 200 nm (b) The calibration curve for Pb(II) in deionized water. 101

List of Scheme
Scheme 1-1. Synthesis of iPD as key intermediate for the preparations of (a) crosslinked cPD and (b) SMS sorbent material. 10
Scheme 2-1. Synthesis of derivative TPA monomers and (b)U2 and U3 for Pb(II) uptake; KOH-activation of the aU2 and aU3 for CO2 capture.. 48

List of Table
Table 1-1. Absorption capacity and retention after 30 cycles of sorption-squeezing of SMS27K for various oils and organic solvents. 26
Table 1-2. Comparison of sponge and sponge-like sorbent materials. 31
Table 2-1. Area fractions of N1s and O1s spectra, based on the curve fitting data. 63
Table S1-1. Water advancing contact angle, receding contact angle and hysteretic angel of sample SMS27K. 94
Table S2-1. Elemental analysis of UPP and after KOH-activation aU2 and aU3. 99
參考文獻 References
Chapter 1. Superhydrophobic Melamine Sponge Modified by Cross-Linked Urea Network as Recyclable Oil Absorbent Materials

(1) Schaum, J.; Cohen, M.; Perry, S.; Artz, R.; Draxler, R.; Frithsen, J. B.; Heist, D.; Lorber, M.; Phillips, L. Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill. Environ. Sci. Technol. 2010, 44, 9383−9389.
(2) Aurell, J.; Gullett, B. K. Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill in situ Burns. Environ. Sci. Technol. 2010, 44, 9431−9437.
(3) Kujawinski, E. B.; Kido Soule, M. C.; Valentine, D. C. L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ. Sci. Technol. 2011, 45, 1298−1306.
(4) Broje, V.; Keller, A. A. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environ. Sci. Technol. 2006, 40, 7914−7918.
(5) Broje, V.; Keller, A. A. Effect of Operational Parameters on the Recovery Rate of an Oleophilic Drum Skimmer. J. Hazard. Mater. 2007, 148, 136−143.
(6) Zahed, M. A.; Aziz, H. A.; Isa, M. H.; Mohajeri, L.; Mohajeri, S. Optimal Conditions for Bioremediation of Oily Seawater. Bioresour. Technol. 2010, 101, 9455−9460.
(7) Boopathy, R.; Shield, S.; Nunna, S. Biodegradation of Crude Oil from the BP Oil Spill in the Marsh Sediments of Southeast Louisiana, USA. Appl. Biochem. Biotechnol. 2012, 167, 1560−1568.
(8) Choi, H.-M.; Cloud, R. M. Natural Sorbents in Oil Spill Cleanup. Environ. Sci. Technol. 1992, 26, 772−776.
(9) Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. J. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 2003, 10, 159− 170.
(10) Wei, Q. F.; Mather, R. R.; Fotheringham, A. F.; Yang, R. D. Evaluation of Nonwoven Polypropylene Oil Sorbents in Marine Oil- Spill Recovery. Mar. Pollut. Bull. 2003, 46, 780−783.
(11) Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponge. Adv. Mater. 2010, 22, 617−621.
(12) Zhu, H.; Qiu, S.; Jiang, W.; Wu, D.; Zhang, C. Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 2011, 45, 4527−4531.
(13) Zhu, Q.; Pan, Q.; Liu, F. Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. J. Phys. Chem. C. 2011, 115, 17464−17470.
(14) Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. Angew. Chem., Int. Ed. 2012, 51, 11371−11375.
(15) Hayase, G.; Kanamori, K.; Fukuchi, M.; Kaji, H. Nakanishi, K. Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Condition for the Separation of Oil and Water. Angew. Chem., Int. Ed. 2013, 52, 1986−1989.
(16) Hu, Y.; Liu, X.; Zou, J.; Gu, T.; Chai, W.; Li, H. Graphite/Isobutylene-isoprene Rubber Highly Porous Cryogels as New Sorbents for Oil Spills and Organic Liquids ACS Appl. Mater. Interfaces. 2013, 5, 7737−7742.
(17) Korhonen, J. T.; Kettunen, M.; Ras, R. H. A.; Ikkala, O. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces. 2011, 3, 1813−1816.
(18) Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. ACS Appl. Mater. Interfaces. 2012, 4, 3207−3212.
(19) Yu, S.; Tan, H.; Wang, J.; Liu, X.; Zhou, K. High Porosity Supermacroporous Polystyrene Materials with Excellent Oil−Water Separation and Gas Permeability Properties. ACS Appl. Mater. Interfaces. 2015, 7, 6745–6753.
(20) Khosravi, M.; Azizian, S. Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup. ACS Appl. Mater. Interfaces 2015, 7, 25326−25333.
(21) Wang, C. F.; Chen, L.T. Preparation of Superwetting Porous Materials for Ultrafast Separation of Water-in-Oil Emulsions. Langmuir. 2017, 33, 1969−1973.
(22) Yang, Y.; Deng, Y.; Tong, Z.; Wang, C. Multifunctional Foams Derived from Poly(Melamine Formaldehyde) as Recyclable Oil Absorbents. J. Mater. Chem. A. 2014, 2, 9994−9997.
(23) Ruan, C.; Ai, K.; Li, X.; Lu, L. A Superhydrophobic Sponge with Excellent Absorbency and Flame Retardancy. Angew. Chem., Int. Ed. 2014, 53, 5556−5560.
(24) Choi, S. J.; Kwon, T. H.; Im, H.; Moon, D. I.; Baek, D. J.; Seol, M. L.; Duarte, J. P.; Choi, Y. K. A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Appl. Mater. Interfaces. 2011, 3, 4552−4556.
(25) Tao, M.; Xue, L.; Liu, F.; Jiang, L. An Intelligent Superwetting PVDF Membrane Showing Switchable Transport Performance for Oil/Water Separation. Adv. Mater. 2014, 26, 2943−2948.
(26) Nguyen, D. D.; Tai, N. H.; Lee, S. B.; Kuo, W. S. Superhydrophobic and Superoleophilic Properties of Graphene-Based Sponges Fabricated Using a Facile Dip Coating Method. Energy Environ. Sci. 2012, 5, 7908−7912.
(27) Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B. Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation. ACS Appl. Mater. Interfaces. 2013, 5, 7208–7214.
(28) Mu, L.; Yang, S.; Haoa, B.; Ma, P. C. Ternary silicone sponge with enhanced mechanical properties for oil–water separation. Polym. Chem. 2015, 6, 5869–5875.
(29) Ge, B.; Zhua, X.; Li, Y.; Mena, X.; Li, P.; Zhang, Z. Versatile fabrication of magnetic superhydrophobic foams and application for oil water separation. Colloids Surf. A, 2015, 482, 687–692.
(30) Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A. Oil/water separation techniques: a review of recent progresses and future direction. J. Mater. Chem. A. 2017, 5, 16025–16058.
(31) Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554−2560.
(32) Zhou, X.; Zhang, Z.; Xu, X.; Men, X.; Zhu, X. Facile Fabrication of Superhydrophobic Sponge with Selective Absorption and Collection of Oil from Water. Ind. Eng. Chem. Res. 2013, 52, 9411− 9416.
(33) Liu, Y.; Ma, J.; Wu, T.; Wang, X.; Huang, G.; Liu, Y.; Qiu, H.; Li, Y.; Wang, W.; Gao, J. Cost-Effective Reduced Graphene Oxide-Coated Polyurethane Sponge as a Highly Efficient and Reusable Oil-Absorbent. ACS Appl. Mater. Interfaces. 2013, 5, 10018−10026.
(34) Zhu, Q.; Chu, Y.; Wang, Z.; Chen, N.; Lin, L.; Liu, F.; Pan, Q. Robust Superhydrophobic Polyurethane Sponge as a Highly Reusable Oil-Absorption Material. J. Mater. Chem. A. 2013, 1, 5386−5393.
(35) Chen, N.; Pan, Q. Versatile Fabrication of Ultralight Magnetic Foams and Application for oil Water Separation. ACS Nano. 2013, 7, 6875−6883.
(36) Sun, H.; Li, A.; Zhu, Z.; Liang, W.; Zhao, X.; La, P.; Deng, W. Superhydrophobic Activated Carbon-Coated Sponges for Separation and Absorption. ChemSusChem. 2013, 6, 1057−1062.
(37) Wang, C. F.; Lin, S. J. Robust Superhydrophobic/Superoleophilic Sponge for Effective Continuous Absorption and Expulsion of Oil Pollutants from Water. ACS Appl. Mater. Interfaces. 2013, 5, 8861−8864.
(38) Lu, Y.; Yuan, W. Superhydrophobic/Superoleophilic and Reinforced Ethy Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Crosslinking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Appl. Mater. Interfaces. 2017, 9, 29167–29176.
(39) Zhu, H.; Chen, D.; An, W.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery. Small. 2015, 11 (39), 5222–5229.
(40) Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface Modification of Bacterial Cellulose Aerogels’ Web-Like Skeleton for Oil/Water Separation. ACS Appl. Mater. Interfaces. 2015, 7, 7373−7381.
(41) Zhu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Adv. Funct. Mater. 2014, 25, 597−605.
(42) Ke, Q.; Jin, Y.; Jiang, P.; Yu, J. Oil/Water Separation Performances of Superhydrophobic and Superoleophilic Sponges. Langmuir. 2014, 30, 13137–13142.
(43) Wang, G.; Zeng, Z.; Wu, X.; Ren, T.; Hana, J.; Xue, Q. Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil–water mixtures. Polym. Chem. 2014, 5, 5942–5948.
(44) Du, P.; Wu, M.; Liu, X.; Zheng, Z.; Wang, X.; Sun, P.; Joncheray, T.; Zhang, Y. Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels–Alder bonds. New J. Chem. 2014, 38, 770−776.
(45) Du, P.; Wu, M.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Diels–Alder-Based Crosslinked Self-Healing Polyurethane/Urea from Polymeric Methylene Diphenyl Diisocyanate. J. APPL. POLYM. SCI. 2014, 131, 9, 40234.
(46) Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Adv. 2013, 3, 15475−15482.
(47) Li, G.; Li, D.; Niu, Y.; He, T.; Chen, K. C.; Xu, K. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A. 2013, 102, 3, 685−697.
(48) Zhou, S.; Liu, P.; Wang, M.; Zhao, H.; Yang, J.; Xu, F. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation. ACS Sustainable Chem. Eng. 2016, 4, 6409−6416.
(49) Mattia, J.; Painter, C. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly(ethylene glycol). Macromolecules. 2007, 40, 1546−1554.
(50) Coleman, M. M.; Sobkowiak, M.; Pehlert, G. J.; Painter, P. C. Infrared temperature studies of a simple polyurea. Macromol. Chem. Phys. 1997, 198,117−134.
(51) Lu, J.; Xu, D.; Wei, J.; Yan, S.; Xiao, R. Superoleophilic and Flexible Thermoplastic Polymer Nanofiber Aerogels for Removal of Oils and Organic Solvents. ACS Appl. Mater. Interfaces. 2017, 9, 25533−25541.
(52) Seeni Meera, K.M.; Sankar, R.M.; Jaisankar, S.N.; Mandal, A.B. Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol−Gel Process. J. Phys. Chem. B. 2013, 117, 2682−2694.
(53) Gurunathan, T.; Chung, J. S. Physicochemical Properties of Amino-Silane-Terminated Vegetable Oil-Based Waterborne Polyurethane Nanocomposites. ACS Sustainable Chem. Eng. 2016, 4, 4645−4653.
(54) Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine formaldehyde: curing studies and reaction mechanism. Polymer Journal, 2013, 45, 413–419.
(55) Larmour, I. A.; Bell, S. E. J.; Saunders, G. C. Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition. Angew. Chem., Int. Ed. 2007, 46, 1710−1712.
(56) Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Chen, B.; Chen, F.; Yang, Q.; Bu, Q.; Lu, X.; Sun, L.; Zhang, H. Carbon Fiber Aerogel Made from Raw Cotton: A Novel, Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Mater. 2013, 25, 5916−5921.
(57) Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554−2560.
(58) Bi, H.; Huang, X.; Wu, X.; Cao, X.; Tan, C.; Yin, Z.; Lu, X.; Sun, L.; Zhang, H. Carbon Microbelt Aerogel Prepared by Waste Paper: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. Small. 2014, 10 (17), 3544−3550.
(59) Wu, Z.-Y.; Li, C.; Liang, H.-W.; Chen, J.-F.; Yu, S.-H. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. 2013, 125 (10), 2997−3001.
(60) Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. ACS Appl. Mater. Interfaces. 2017, 9, 25029−25037.
(61) Pham, V. H.; Dickerson, J. H. Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials. ACS Appl. Mater. Interfaces. 2014, 6, 14181−14188.
(62) Hayase, G.; Kanamori, K.; Fukuchi, M.; Kaji, H.; Nakanishi, K. Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water. Angew. Chem., Int. Ed. 2013, 52, 1986−1989.

Chapter 2. Effective CO2 Capture and Lead(II) Uptake of Porous Materials Derived from Cross-linked Urea Networks

(1) Smith, B. J.; Dichtel, W. R. Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions. J. Am. Chem. Soc. 2014, 136, 8783−8789.
(2) Bhunia, S.; Banerjee, B.; Bhaumik, A. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature. Chem. Commun. 2015, 51, 5020−5023.
(3) Hou, L.; Zhu, C.; Wu, X.; Chen, G.; Tang, D. Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout. Chem. Commun. 2014, 50, 1441−1443.
(4) Katsoulidis, A. P.; Dyar, S. M.; Carmieli, R.; Malliakas, C, D.; Wasielewski, M. R.; Kanatzidis, M. G. Copolymerization of terephthalaldehyde with pyrrole, indole and carbazole gives microporous POFs functionalized with unpaired electrons. J. Mater. Chem. A. 2013, 1, 10465–10473.
(5) Takeda, H.; Ohashi, M.; Goto, Y.; Ohsuna T.; Tani, T.; Inagaki, S Light-Harvesting Photocatalysis for Water Oxidation Using Mesoporous Organosilica. Chem. Eur. J. 2014, 20, 1–8.
(6) Lian, H. Y.; Hu, M.; Liu, C. H.; Yamauchi, Y.; Wu, K. C. W. High biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem. Commun. 2012, 48, 5151–5153.
(7) Nugent, P.; Belmabkhout, Y.; Burd, S. D; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. NATURE. 2013, 495, 7.
(8) Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322.
(9) Li, P.; He, Y.; Guang, J.; Weng, L.; Zhao, J. C. G.; Xiang, S.; Chen, B. A Homochiral Microporous Hydrogen-Bonded Organic Framework for Highly Enantioselective Separation of Secondary Alcohols. J. Am. Chem. Soc. 2014, 136, 547−549.
(10) Nandi, M.; Okada, K.; Dutta, A.; Bhaumik, A.; Maruyama, J.; Derksa, D.; Uyama, H. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 2012, 48, 10283–10285.
(11) Modak, A.; Pramanik, M.; Inagakib, S.; Bhaumik, A. A triazine functionalized porous organic polymer: excellent CO2 storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions. J. Mater. Chem. A. 2014, 2, 11642–11650.
(12) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131, 4570–4571.
(13) Liu, K.; Li, B.; Li, Y.; Li, X.; Yang, F.; Zeng, G.; Peng, Y.; Zhang, Z.; Li, G.; Shi, Z.; Fenga, S.; Song, D. An N-rich metal–organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. Chem. Commun. 2014, 50, 5031–5033.
(14) O. Jorgettoa, A. D.; C.P. da Silva, A.; H.P. Wondracek, M.; I.V. Silva, R.; D. Velinic, E.; J. Saekia, M.; A. Pedrosaa, V.; R. Castro, G. Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties. Applied Surface Science. 2015, 345, 81–89.
(15) Ali, I.; Aboul-Enein, H. Y.; Instrumental Methods in Metal Ion Speciation. Taylor & Francis Group: New York, 2006.
(16) Chojnacka, K. Biosorption and bioaccumulation–the prospects for practical applications. Environment International. 2010, 36, 299–307.
(17) Pruden, W. Preventing Lead Poisoning in Young Children–United States. Morbidity & Mortality Weekly Report. 1985, 34 (5), 66.
(18) Rice, K. M.; Walker Jr, E. M.; Wu, M.; Gillette, C.; Blough, E. R. Environmental Mercury and Its Toxic Effects. J Prev Med Public Health. 2014, 47, 74–83.
(19) Blumenthal, N. C.; Cosma, V.; Skyler, D.; LeGeros, J.; Waiters, M. The Effect of Cadmium on the Formation and Properties of Hydroxyapatite In Vitro and its Relation to Cadmium Toxicity in the Skeletal System. Calcif Tissue Int. 1995, 56, 316–322.
(20) Ali, I.; Aboul-Enein, H. Y. Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere. 2002, 48, 275–278.
(21) Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Chemical precipitation of heavy metals from acid mine drainage. Water Research. 2002, 36, 4757–4764.
(22) Chen, Y.; Pan, B.; Li, H.; Zhang, W.; Lv, L.; Wu, J. Selective Removal of Cu(II) Ions by Using Cation-exchange Resin-Supported Polyethyleneimine (PEI) Nanoclusters. Environ. Sci. Technol. 2010, 44, 3508–3513.
(23) Salehi, E.; Daraei, P.; Shamsabadi, A. A. A review on chitosan-based adsorptive membranes. Carbohydrate Polymers. 2016, 152, 419–432.
(24) Feng, C.; Sugiura, N.; Shimada, S.; Maekawa, T. Development of a high performance electrochemical wastewater treatment system. Journal of Hazardous Materials B. 2003, 103, 65–78.
(25) Wang, J.; Liu, H.; Yang, S.; Zhang, J.; Zhang, C.; Wu, H. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters. Applied Surface Science. 2014, 316, 443–450.
(26) Daşbaş ı, T.; Saçmacı, S.; Çankaya, N.; Soykan, C. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry. Food Chemistry. 2016, 211, 68–73.
(27) Chen, C.; Wang, J. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. Journal of Hazardous Materials. 2008, 151, 65–70.
(28) Li, N.; Bai, R.; Liu, C. Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir. 2005, 21, 11780-11787.
(29) Wang, J.; Chen, C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology. 2014, 160, 129–141.
(30) Ali, I.; Gupta, V. K. Advances in water treatment by adsorption technology. NATURE PROTOCOLS. 2006, 6, 2661–2667.
(31) Ali, I. The Quest for Active Carbon Adsorbent Substitutes: Inexpensive Adsorbents for Toxic Metal Ions Removal from Wastewater. Separation & Purification Reviews. 2010, 39, 95–171.
(32) Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091.
(33) Ali, I.; Asim, M.; Khan, T. A. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management. 2012, 113, 170–183.
(34) Ali, I. Water Treatment by Adsorption Columns: Evaluation at Ground Level. Separation & Purification Reviews. 2014, 43, Issue 3.
(35) Xiang, Z.; Cao, D. Porous covalent–organic materials: synthesis, clean energy application and design. J. Mater. Chem. A. 2013, 1, 2691-2718.
(36) Yu, H.; Shen, C.; Tian, M.; Qu, J.; Wang, Z. Microporous Cyanate Resins: Synthesis, Porous Structure, and Correlations with Gas and Vapor Adsorptions. Macromolecules. 2012, 45, 5140–5150.
(37) Ren, S.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, Fluorescent, Covalent Triazine-Based Frameworks Via Room-Temperature and Microwave-Assisted Synthesis. Adv Mater. 2012, 24, 2357–2361.
(38) Jiang, J. X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. Metal–Organic Conjugated Microporous Polymers. Angew. Chem. Int. Ed. 2011, 123, 1104–1107.
(39) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schth, F. Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angew. Chem. Int. Ed. 2009, 48, 6909 –6912.
(40) Chen, L.; Yang, Y.; Jiang, D. CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers. J. Am. Chem. Soc. 2010, 132, 9138–9143.
(41) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.
(42) Chun, J.; Kang, S.; Kang, N.; Lee, S. M.; Kim, H. K.; Son, S. U. Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. J. Mater. Chem. A. 2013, 1, 5517–5523.
(43) Kaur, K.; Hupp, J. T.; Nguyen, S. T.; Porous Organic Polymers in Catalysis: Opportunities and Challenges. ACS Catal. 2011, 1, 819–835.
(44) Butler, R. N.; Coyne, A. G. Water: Nature’s Reaction EnforcersComparative Effects for Organic Synthesis “In-Water” and “On-Water”. Chem. Rev. 2010, 110, 6302–6337.
(45) Moon, S. Y.; Bae, J. S.; Jeon, E.; Park, J. W. Organic Sol–Gel Synthesis: Solution-Processable Microporous Organic Networks. Angew. Chem. 2010, 122, 9694 –9698.
(46) Shin, J. Y.; Lee, B. S.; Jung, Y.; Kim, S. J.; Lee, S. G. Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band. Chem. Commun. 2007, 5238–5240.
(47) Harada, T.; Ikeda, S.; Ng, Y. H.; Sakata, T.; Mori, H.; Torimoto, T.; Matsumura, M. Rhodium Nanoparticle Encapsulated in a Porous Carbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation. Adv. Funct. Mater. 2008, 18, 2190–2196.
(48) Lin, R. C.; Mohamed, M. G.; Kuo, S. W. Benzoxazine/Triphenylamine-Based Dendrimers Prepared through Facile One-Pot Mannich Condensations. Macromol. Rapid Commun. 2017, 38, 1700251.
(49) Bollaert, V.; Schryver, F. C. D.; Tackx, P.; Persoom, A.; Nusselder, J. J. H.; Put, J. A New Fluorescence Probe for Network Formation with Interesting Nonlinear Optical Properties. Adv Mater. 1993, 5, No 4.
(50) Zhang, H.; Dang, Q.; Liu, C.; Cha, D.; Yu, Z.; Zhu, W.; Fan, B. Uptake of Pb(II) and Cd(II) on Chitosan Microsphere Surface Successively Grafted by Methyl Acrylate and Diethylenetriamine. ACS Appl. Mater. Interfaces. 2017, 9, 11144−11155.
(51) Mattia, J.; Painter, C. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly(ethylene glycol). Macromolecules. 2007, 40, 1546−1554.
(52) Chung, C. H.; Liu, W. C.; Hong, J. L. Superhydrophobic Melamine Sponge Modified by Cross-Linked Urea Network as Recyclable Oil Absorbent Materials. Ind. Eng. Chem. Res. 2018, 57, 8449−8459.
(53) Wu, J. Y.; Mohamed, M. G.; Kuo, S. W. Directly synthesized nitrogen-doped microporous carbons from polybenzoxazine resins for carbon dioxide capture. Polym. Chem. 2017, 8, 5481–5489.
(54) Wan, L.; Wang, J.; Feng, C.; Sun, Y.; Li, K. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture. Nanoscale. 2015, 7, 6534−6544.
(55) Li, J. G.; Tsai, C. Y.; Kuo, S. W. Fabrication and Characterization of Inorganic Silver and Palladium Nanostructures within Hexagonal Cylindrical Channels of Mesoporous Carbon. Polymers. 2014, 6, 1794−1809.
(56) Mariappan, T.; Wilkie, C. Thermal and fire retardant properties of polyurea. Polimery-Warsaw. 2013, 58, 371−384.
(57) Fu, H. K.; Huang, C. F.; Kuo, S. W.; Lin, H. C.; Yei, D. U.; Chang, F. C. Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine. Macromol. Rapid Commun. 2008, 29, 1216–1220.
(58) Liu, J.; Ishida H. Anomalous Isomeric Effect on the Properties of Bisphenol F based Benzoxazines: Toward the Molecular Design for Higher Performance. Macromolecules. 2014, 47, 5682−5690.
(59) Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schuth, F.; Bongard, H. J.; Lu, A. H. Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-Based Porous Carbon Monoliths and Their Application as High-Performance CO2 Capture Sorbents. J. Am. Chem. Soc. 2011, 133, 11378–11388.
(60) Wang, Y.; Lei, Y.; Li, J.; Gu, L.; Yuan, H.; Xiao, D. Synthesis of 3D-Nanonet Hollow Structured Co3O4 for High Capacity Supercapacitor. ACS Appl. Mater Interfaces. 2014, 6, 6739−6747.
(61) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Reinoso, F. R.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015; 87(9-10): 1051–1069.
(62) Li, L.; Chen, Z.; Zhong, H.; Wang, R. Urea-Based Porous Organic Frameworks: Effective Supports for Catalysis in Neat Water. Chem. Eur. J. 2014, 20, 3050– 3060.
(63) Weng, C, H. Modeling Pb(II) adsorption onto sandy loam soil. Journal of Colloid and Interface Science. 2004, 272, 262–270.
(64) Mendeza, J. R. R.; Zepedab, R. M.; Ramosb, E. L.; Floresa, P. E. D.; Shirai, K. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. Journal of Hazardous Materials. 2009, 162, 503–511.
(65) Zhang, Q.; Yang, Q.; Phanlavong, P.; Li, Y.; Wang, Z.; Jiao, T.; Peng, Q. Highly Efficient Lead(II) Sequestration Using Size-Controllable Polydopamine Microspheres with Superior Application Capability and Rapid Capture. ACS Sustainable Chem. Eng. 2017, 5, 4161−4170.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code