Responsive image
博碩士論文 etd-0707118-101519 詳細資訊
Title page for etd-0707118-101519
論文名稱
Title
利用可逆鍵結形成具拉伸性之自我修復材料及其電性應用
Self-healing stretchable hydrogels from reversible bonds and their use as conductivity films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-18
繳交日期
Date of Submission
2018-08-07
關鍵字
Keywords
原子轉移自由基聚合、氫鍵、單寧酸、自我修復材料、金屬配位鍵、離子鍵、可拉伸性導電薄膜、聚乙二醇、聚丙烯酸、高分子間氫鍵複合物、彈性體
hydrogen bonding, Tannic Acid, atom transfer radical polymerization (ATRP), ionic bond, metal-coordinated bond, poly(acrylic acid), poly(ethylene oxide), stretchable conductivity film, Self-healing, hydrogen-bonded interpolymer complex (HIPC), elastomer
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
中文摘要-1
現今愈來愈注重拉伸性感測器材料發展,其中對於高拉伸程度之應用更開始受到注目。在本實驗中,我們通過氫鍵給予者聚丙烯酸(PAA)和氫鍵接受者聚乙二醇(PEO)或聚乙二醇-聚丙烯二醇-聚乙二醇共聚物(F108)來設計具高拉伸性、自修復性的分子間氫鍵複合物(HIPC)之彈性體。並且透過不同PAA / PEO(或PAA / F108)比例製備的HIPC彈性體都是具有高延展性其中具有最佳柔軟性質及修復性之彈性體最高應變可達到1400%。其中在自修復性質中還可透過在材料受損部位滴上水加速鏈段的移動性來提升自修復之性質,在加上水後的應力及應變癒合效率可高達99%。此外,具拉伸性及自修復之導體薄膜其中之一是由奈米銀線(AgNWs)轉印上基材所得之導電薄膜(Ag-p),另一種則為奈米碳管(SWCNT)和基材進行混摻所得之導電薄膜(SW-b)。在具自修復性的Ag-p導電薄膜為一種較靈敏的拉伸感測器,拉伸時表現出大的電阻變化。而較勻相之SW-b導電薄膜則是較穩定的拉伸感測器,在500%的高應變範圍內具有200次拉伸 - 釋放回復性電阻現象。因此,本研究為成功透過分子內氫鍵複合物之混摻系統製備出可拉伸及可自修復性之彈性體並可應用於靈敏或是穩定之自修復性及可拉伸性之導電薄膜。
中文摘要-2
在本實驗中,我們設計一種新的合成及聚合物,透過將Jeffamine具高度柔軟鏈段之高分子尾端以可其他分子間形成多重性鍵結之單寧酸(Tannic Acid)封裝,形成具有高柔軟性及尾端又具有可鍵結之聚合物,之後利用其尾端單寧酸之鄰苯二酚與Jeffamine尾端之胺基形成離子鍵結作用,並可以與Jeffamine混摻單寧酸所得之複合物進行比較,然而因其中鍵結作用點僅位於尾端中間仍游離一段未鍵結之鏈段,雖然有充足之鏈移動性及柔軟性但不足夠的可逆鍵結反而降低了材料的自修復性質且材料之機械性質相對較弱,這將限制其應用之方向,因此我們透過單寧酸未和Jeffamine之胺基做鍵結之部分和氯化鐵(FeCl3)形成金屬配位鍵提升其可回復性鍵結及材料之機械性質, 因此將柔軟性及可回復性鍵結有效結合,材料之拉伸程度回縮性質可達到最大值,並且自修復性質也可達到最佳效果。 此外,將具有最佳拉伸性及自修復性之薄膜浸入KCl水溶液中膨潤後可得具有拉伸性及自修復性的導電薄膜,並可應用於拉伸感測器或是手部運動感測器。
中文摘要-3
在本實驗中,我們提出透過原子轉移自由基聚合(ATRP)合成具有硬鏈段聚丙烯酸(PAA)和軟鏈段聚乙二醇(PEO)的三嵌段共聚物的高分子。而聚丙烯酸和聚乙二醇之間可以形成動態氫鍵鍵結之彈性體,由於共價鍵的形成會展現出較高的機械強度和韌性,但由於共聚物中PEO鏈段較多而PAA鏈段較少,將無法形成足夠的氫鍵鍵結進而導致結晶,從而降低其材料整體性質。另外,氫鍵的不足也會限制其自我修復性質,因此,我們額外添加少量的PAA以增強足夠的氫鍵作用力,同時也可以有效限制PEO的結晶,這將對整體材料的伸長率和自我修復性能有顯著的影響。
Abstract
Abstract-1
There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species. Herein, we constructed elastomeric, healable HIPC rubberlike film by complexation of hydrogen-bond (H-bond) donating poly(acrylic acid) (PAA) and H-bond accepting poly(ethylene oxide) (PEO) (or poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (F108)). All HIPC elastomers prepared from varied PAA/PEO (or PAA/F108) ratios are all healable elastomers with high extensibility (with the highest strain of 1400%). Recovery of all films can automatically occur or be accelerated by externally-added water droplet. The stress and strain healing efficiencies ((ησ and ηε) of the water-assisting healed PAA/F108 blends are as high as 99%. Furthermore, stretchable and healable conductor films were fabricated from the silver nanowire (AgNWs)-printed (Ag-p) and the single-walled carbon nanotube (SWCNT)-blended (SW-b) conductor films, respectively. The healable Ag-p conductor film is ultra-sensitive strain sensor, exhibiting large electric resistance variation when stretched. In contrast, the healable SW-b film is ultra-stable strain sensor with reversible resistance-strain response over 200 stretching-release cycles within a high strain range of 500%. Therefore, this study provides a new and flexible HIPC strategy for the fabrications of stretchable, ultra-sensitive and -stable self-healing electrode materials.
Abstract-2
In this study, we proposed a new design strategy to synthesize a highly flexible polymer Jeffamine end-capped with Tannic Acid (TA), then blend with Jeffamine form the ionic interaction between diamino group and catechol group which also can compare with Jeffamine blend with TA the less flexible chain in the mixture, but the interaction was amino terminated and TA terminated, whereas the mechanical property was relatively weak which will limit its property, thus the formation of metal- catechol mono- or bis- coordinate bonds between FeCl3 and TA, both flexible chain of polymer and reversible binding increased together, the malleability of the films was enhanced to a maximum value and consequently results in the well self-healing property of the films. Furthermore, flexible conductor was immersing films from KCl solution. The stretchable, healable swelling conductor can be used as sensor for motion detection and strain sensor that may be applied as flexible electronic device.
Abstract-3
In this study, we proposed design strategy to synthesize triblock copolymers having hard poly(acrylic acid) (PAA) blocks and soft poly(ethylene oxide) (PEO) block by atom transfer radical polymerization (ATRP). And dynamic hydrogen bonding blocks were formed by PAA and PEO and the elastomer can be obtained, although the enhancement of covalent bond will exhibit a higher mechanical strength, toughness, but the more PEO chain in the matrix will lead to crystallize, which will decrease its mechanical property. Moreover, the not enough H-bond also limit its self-healing property, thus, we add PAA to enhance the H-bond and it also limit the crystalline of PEO, which will improve the elongation and self-healing property.
目次 Table of Contents
論文審定書……………………………………………… i
誌謝……………………………………………… ii
Chinese Abstract-1……………………………………………… iii
Chinese Abstract-2……………………………………………… iv
Chinese Abstract-3……………………………………………… …..v
English Abstract-1…………………………………………………………………… vi
English Abstract-2………………………………………………………………….. viii
English Abstract-3………………………………………………………………….. ix
Outline of contents…………………………………………………………………….x
List of Figure………………………………………………………………………... xiv
List of Scheme……………………………………………………………………... xxi
List of Table………………………………………………………………………... xxii
Chapter 1. Highly-stretchable, self-healable elastomers from hydrogen-bonded interpolymer complex (HIPC) and their use as sensitive, stable electric skin 1
1-1. Introduction 2
1-2. Experimental 6
1-2-1. Materials 6
1-3. Characterization 9
1-4. Results and discussion 10
1-4-1. Qualitative evaluation of the self-healing property 10
1-4-2. FTIR analysis 12
1-4-3. DSC analysis 15
1-4-4. Dynamic mechanical analysis (DMA) 17
1-4-5. Rheology analysis 18
1-4-6. Tensile test 22
1-4-7. Conductivity films. 27
1-5. Conclusion 36
1-6. References 37
Chapter 2. Self-healing, tannic acid-containing blends with controlled ionic and/or metal-coordinated bonds and their use as electric skin 43
2-1. Introduction 44
2-2. Experimental 48
2-2-1. Materials 48
2-3. Characterization 51
2-4. Results and discussion 53
2-4-1. Syntheses of JTA 53
2-4-2. ionic and metal-coordinated bond characteristic 55
2-4-3. Qualitative evaluation of the self-healing property 57
2-4-4. DMA and DSC 59
2-4-5. Rheology analysis 60
2-4-6. Tensile test 64
2-4-7. Wearable sensor on conductivity test 66
2-5. Conclusion 71
2-6. Reference 73
Chapter 3. Enhanced self-healing property by blending small amounts of poly(acrylic acid) (PAA) to poly(acrylic acid-ethylene oxide-acrylic acid) (AEA) triblock copolymer 78
3-1. Introduction 79
3-2. Experimental 82
3-2-1. Materials 82
3-3. Characterization 85
3-4. Results and discussion 87
3-4-1. Synthesis of triblock copolymer 87
3-4-2. Qualitative evaluation of the self-healing property 89
3-4-3. FT-IR analysis 91
3-4-4. DSC analysis 93
3-4-5. WXRD analysis 94
3-4-5. Rheology analysis 96
3-4-6. Tensile test 99
3-5. Conclusion 101
3-6. Reference 102
Supporting information 107

List of Figure
Figure 1-1. FTIR spectra of (a) PAA/PEO x/y and (b) PAA/F108 x/y blends. (magnified carbonyl stretching bands were given in the lower panels) 14
Figure 1-2. Transformations of the characteristic sharp crystalline peaks of PEO segments chains to the broad, amorphous peaks in the blends of (a) PAA/PEO x/y and (b) PAA/F108 x/y blends. 15
Figure 1-3. DSC curves of (a) pure PEO, PAA and PAA/PEO x/y and (b) pure F108, PAA and PAA/F108 x/y blends. (heating rate = 10 oC/min) 17
Figure 1-4. Storage modulus (E’) of (a) PAA/PEO x/y and (b) PAA/F108 x/y blends from DMA. 18
Figure 1-5. Rheological behavior of (a) PAA/PEO x/y and (b) PAA/F108 x/y blends. (x/y = 1/1 and 1/9) 20
Figure 1-6. Storage modulus (G’) and loss modulus (G’’) of (a) PAA/PEO 1/9 and (b) PAA/F108 1/9 films under a continuous strain sweep with alternating oscillation strains of 1% and 200%, respectively. 21
Figure 1-7. Stress-strain curves of virgin and self-healing films of (a) PAA/PEO 1/9 and (b) PAA/F108 1/9, and the stress healing efficiencies of (c) PAA/PEO x/y and (d) PAA/F108 x/y, and the strain healing efficiencies of (e) PAA/PEO x/y and (f) PAA/F108 x/y at various healing times. 24
Figure 1-8. Stress-strain curves of virgin and water-assisting healed films of (a) PAA/PEO 1/9 and (b) PAA/F108 1/9, and the stress healing efficiencies of virgin and water-assisting healed films of (c) PAA/PEO 1/9 and (d) PAA/F108 1/9, and the strain healing efficiencies of virgin and water-assisting healed films of (e) PAA/PEO 1/9 and (f) PAA/F108 1/9 at various healing times. 26
Figure 1-9. (a) SEM image of the as-printed AgNWs on the top of PAA/F108 1/9 elastomer, (b) the flexible Ag-p conductor film with bending, and series of photos demonstrating that the conductance of the healed Ag-p films (c) after being cut and (d) after being bent can be well-restored to result in the light-up of integrated LED again…… 28
Figure 1-10. (a) The resistance variation of the bent Ag-p conductor film over different bending times, (b) the electric resistance ratio (R/R0), and resistance changes of Ag-p conductor films with strains (c) 800% and (d) 50%. 30
Figure 1-11. (a) The SEM micrograph taken from the vacuum-dried SW-b film, (b) resistance recovery of SW-b conductor films with strains of 500% and 1000%, (c) electric resistance ratio of the bent SW-b film over different bending times and (d) electric resistance ratio of the bent SW-b film over different stretching times from 0% to 500% strain. 32
Figure 1-12. (a) resistance recovery of PAA/PEO/Rd conductivity film with strains of 600 % (insert luminescent image of the PAA/PEO/Rd conductivity film under stretching) (b) the PL emission spectra of PAA/PEO/Rd conductivity film strain range from 2 cm to 8 cm. 35
Figure 2-1. 1H NMR spectra of Jeffamine end-capped TA (JTA) (= 3.4 x 10-4 M) in d6-DMSO. 54
Figure 2-2. XPS survey spectra of the TA, J/TA and J/JTA. 56
Figure 2-3. Raman spectra of J/TA, J/JTA, J/TA/Fe(III) and J/JTA/Fe(III). 57
Figure 2-4. (a) DMA analysis of J/TA, J/JTA, J/TA/Fe(III) and J/JTA/Fe(III). (b) DSC analysis of J/TA, J/JTA, J/TA/ Fe(III) and J/JTA/Fe(III). 60
Figure 2-5. Rheological analysis of J/TA, J/JTA, J/TA/Fe(III) and J/JTA/Fe(III). 62
Figure 2-6. Storage modulus (G’) and loss modulus (G’’) of (a) J/TA, (b) J/JTA, (c) J/TA/Fe(III) and (d) J/JTA/Fe(III) films under a continuous strain sweep with alternating oscillation strains of 1% and 150%, respectively. 64
Figure 2-7. Stress-strain curves of virgin and self-healing films of (a) J/TA, (b) J/JTA, (c) J/TA/Fe(III) and (d) J/JTA/Fe(III) films. 65
Figure 2-8. (a) Time evolution of the electrical healing process by resistance measurements under room temperature, (b) cycling of the cutting- healing processes at the same location and (c) self-healing optical images of the J/JTA/Fe(III) KCl swelling hydrogel at room temperature. 67
Figure 2-9. (a) Resistance recovery of conductor films with strains of 100% and 500 %, (b) the resistance variation of the bent conductor film over different bending, the healable, adhesive, and wearable soft strain sensors for human motion detection: (c) wrist, (d) elbow joint bending, (e) electric resistance ratio of the bent conductor film over different bending times and (f) electric resistance ratio of the conductor film over different stretching times from 0% to 100% strain range. 70
Figure 3-1. 1H NMR spectra of (a) BEB, (b) AEA triblock copolymer. 89
Figure 3-2. FT-IR spectra of FT-IR spectra of (a) AEA elastomer, (b) AEA/A(1) elastomer and (c) AEA/A(2) elastomer. 92
Figure 3-3. DSC curve of AEA elastomer, AEA/(1) elastomer and AEA/A(2) elastomer.. 94
Figure 3-4. WAXD spectra of AEA elastomer, AEA/(1) elastomer and AEA/A(2) elastomer. 95
Figure 3-5. The transmittance percentage of AEA elastomer, AEA/(1) elastomer and AEA/A(2) elastomer. 96
Figure 3-6. (a) Rheological behavior of AEA elastomer, (b) storage modulus (G’) and loss modulus (G’’) of AEA elastomer, (c) rheological behavior of AEA/A(1) elastomer (d) storage modulus (G’) and loss modulus (G’’) of AEA/A(1) elastomer, (e) rheological behavior of AEA/A(2) elastomer and (f) storage modulus (G’) and loss modulus (G’’) of AEA/A(2) elastomer. 98
Figure 3-7. (a) Stress-strain curves of virgin and self-healing films of AEA, (b) the stress and strain healing efficiencies of AEA elastomer, (c) stress-strain curves of virgin and self-healing films of AEA/A(1) elastomer, (d) the stress and strain healing efficiencies of AEA/A(1) elastomer, (e) stress-strain curves of virgin and self-healing films of AEA/A(2) elastomer and (f) the stress and strain healing efficiencies of AEA/A(2) elastomer. 100
Figure S1-1. Strong adherence between PAA/F108 1/9 and (a) glass, (b) polystyrene and (c) aluminum plate. 107
Figure S1-2. Storage modulus (G’) and loss modulus (G’’) of (a) PAA/PEO 1/1 and (b) PAA/F108 1/1 films under a continuous strain sweep with alternating oscillation strains of 1% and 200%, respectively. 108
Figure S1-3. Stress-strain curves of virgin and self-healing films of (a) PAA/PEO 1/1 and (b) PAA/F108 1/1 108
Figure S1-4. WXRD spectra of (a) PEO, PAA, PAA/PEO 1/9 and (b) F108, PAA and PAA/F108 1/9. 109
Figure S1-5. UV-Vis spectra and transparent films of PAA/PEO 1/9 and PAA/F108 1/9 elastomers. 109
Figure S1-6. The resistance variation of the SW-b bent conductor film over different bending. 110
Figure S1-7. Resistance changes towards minimal movements by finger touches of (a) Ag-p and (b) SW-b. 110
Figure S1-8. Self-healing of the SW-b and Ag-p conductor films. 111
Figure S1-9. Electric resistance ratio of the healable Ag-p and SW-b conductor films over different healing cycles. 111
Figure S1-10. Resistance change and recovery of notched and unnotched SW-b conductor films. 112
Figure S2-1. FTIR spectra of JHDI and JTA. 113
Figure S2-2. An extension of the healed specimen of J/JTA. 113
Figure S2-3. (a) The stress healing efficiencies of J/TA, J/JTA, J/TA/Fe(III) and J/JTA/Fe(III). (b) the strain healing efficiencies of J/TA, J/JTA, J/TA/Fe(III) and J/JTA/Fe(III). 114
Figure S2-4. MALDI-TOF mass spectra of JTA. (matrix:DCTB) 114
Figure S2-5. (a) Virgin stress-strain curves of J/TA, J/JTA, J/JTA/Fe(III) and J/TA/Fe(III). (b) elongation percent of J/TA, J/JTA, J/JTA/Fe(III) and J/TA/Fe(III). 115
Figure S3-1. FTIR spectra of Br-PEO-Br and BEB triblock copolymer. 116
Figure S3-2. 1H NMR spectra of Br-PEO-Br. 116
Figure S3-3. GPC elution curve of Br-PEO-Br, BEB and AEA triblock copolymer…..…. 117
Figure S3-4. Deconvolution of XRD of AEA elastomer. 117
Figure S3-5. The transmittance percentage of AEA elastomer, AEA/(1) elastomer, AEA/A(2) elastomer, PAA/PEO 1/9 and PAA/F108 1/9. 118

List of Scheme
Scheme 1-1. Preparations and the inter- and self-associated H bonding of the self-healing HIPC blends of PAA/PEO x/y and PAA/F108 x/y and configuration difference between Ag-p and SW-b conductor films. 6
Scheme 1-2. Qualitative evaluations of self-healing properties for PAA/PEO 1/9 and PAA/F108 1/9 films under conditions of automatic recovery (upper-left), water-assisting recovery (upper-right) and extension of the healed specimen (lower). 12
Scheme 2-1. Syntheses process of Jeffamine end-capped TA. 49
Scheme 2-2. Preparations of the self-healable (a) J/TA, (b) J/JTA, (c) J/TA/Fe(III) and (d) J/JTA/Fe(III) films. 50
Scheme 2-3. Qualitative evaluations of self-healing properties (a) J/TA (b) J/JTA (c) J /TA/Fe(III) and (d) J/JTA/Fe(III). And extension of the healed specimen (e) J/JTA/Fe(III). 58
Scheme 3-1. Syntheses process for the preparation of the AEA triblock copolymers. 86
Scheme 3-2. Preparations of the AEA/A(1) and AEA/A(2) elastomers. 87
Scheme 3-3. Qualitative evaluations of self-healing properties (a) AEA elastomer, (b) AEA/A(1) elastomer and (c) AEA/A(2) elastomer. 90

List of Table
Table 1-1. Comparison of performance parameters for different strain sensor. 34
Table 2-1. Molecular weight of JTA evaluated from NMR, mass and GPC. 55
Table 2-2. The crossover frequency and relaxation time of J/TA, J/JTA, J/TA/Fe(III), J/JTA/Fe(III). 62
Table 3-1. Molecular weight of Br-PEO-Br, BEB and AEA evaluated from NMR and GPC…. 89
Table S1-1. Deconvolution of carbonyl groups of pure PAA, PAA/PEO x/y and PAA/F108 x/y. 107
參考文獻 References
chapter 1
(1) Li, J.; Geng, L.; Wang, G.; Chu, H.; Wei, H. Chem. Mater. 2017, 29, 8932−8952.
(2) Chen, D.; Pei, Q. Chem. Rev. 2017, 117, 11239−11268.
(3) Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. Adv. Mater. 2017, 29, 1700321−1700327.
(4) Bade, S. G. R.; Shan, X.; Hoang, P. T.; Li, J.; Geske, T.; Cai, L.; Pei, Q.; Wang, C.; and Yu Z. Adv. Mater. 2017, 29, 1607053−1607060.
(5) Wang, Z.; Pan, Q. Adv. Funct. Mater. 2017, 27, 1700690−1700698.
(6) Guo, Y.; Zhou, X.; Tang, Q.; Bao, H.; Wang, G.; Saha, P. J. Mater. Chem. A. 2016, 4, 8769−8776.
(7) Someya, T.; Bao, Z.; Malliaras, G. G. Nature. 2016, 540, 379−385.
(8) Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Nat. Nano. 2011, 6, 788−792.
(9) Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. Nat. Nano. 2011, 6, 296−301.
(10) Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. ACS Nano. 2014, 8, 5154−5163.
(11) Gong, S.; Lai, D. T. H.; Su, B.; Si, K. J.; Ma, Z.; Yap, L. W.; Guo, P. Z.; Cheng, W. L. Adv. Electron. Mater. 2015, 1, 1400063−1400070.
(12) Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Adv. Mater. 2014, 26, 2022−2027.
(13) Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S.S.; Ha, J. S. Adv. Funct. Mater. 2015, 25, 4228−4236.
(14) Li, M. F.; Li, H. Y.; Zhong, W. B.; Zhao, Q. H.; Wang, D. ACS Appl. Mater. Interfaces. 2014, 6, 1313−1319.
(15) Yao, S.; Zhu, Y. Nanoscale. 2014, 6, 2345−2352.
(16) Ko, Y.; Song, S. K; Kim N. H.; Chang, S. T. Langmuir. 2016, 32, 366–373.
(17) Malik, S.; Rosner, H.; Hennrich, F.; Bottcher, A.; Kappes, M. M.; Beck, T.; Auhorn, M. Phys. Chem. Chem. Phys. 2004, 6, 3540−3544.
(18) Kumar, N. A.; Jeon, I. Y.; Sohn, G. J.; Jain, R.; Kumar, S.; Baek, J. B. ACS Nano. 2011, 5, 2324−2331.
(19) Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. ACS Nano. 2012, 6, 5457−5464.
(20) Huynh, T.P.; Haick, H. Adv. Mater. 2016, 28, 138−143.
(21) Ko, J.; Kim, Y. J.; Kim, Y. S. ACS Appl. Mater. Interfaces. 2016, 8, 23854−23861.
(22) Kim, K.; Jung, M.; Kim, B.; Kim, J.; Shin, K.; Kwon, O.S.; Jeon, S. Nano Energy. 2017, 41, 301−307.
(23) Chen, X. Small Methods. 2017, 1, 1600029−1600034.
(24) Bergman, S. D.; Wudl, F. J. Mater. Chem. 2008, 18, 41−62.
(25) Du, P.; Wu, M.; Liu, X.; Zheng, Z.; Wang, X.; Sun, P.; Joncheray, T.; Zhang, Y. New J. Chem. 2014, 38, 770−776.
(26) Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. RSC Advances. 2013, 3, 15475−15482.
(27) Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z. Angew. Chem. Int. Ed. 2012, 51, 10561 −10565.
(28) Chen, Y.; Guan, Z. Chem. Commun. 2014, 50, 10868−10870.
(29) Das, A.; Sallat A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. ACS Appl. Mater. Interfaces. 2015, 7, 20623−20630.
(30) Wei, Z.; He, J.; Liang, T.; Oh, H.; Athas, J.; Tong, Z.; Wang, C.; Nie, Z.; Polym. Chem. 2013, 4, 4601−4605.
(31) Herbst, F.; Döhler, D.; Michael, P.; Binder, W. H. Macromol. Rapid Commun. 2013, 34, 203−220.
(32) Zhang, H.; Xia, H.; Zhao, Y. ACS Macro Lett. 2012, 1, 1233−1236.
(33) Zhang, X.; He, J. Scientific Reports. 2015, 5, 9227−9230.
(34) Ozeki, T.; Yuasa, H.; Okada. H. AAPS Pharm. Sci. Tech. 2005, 6, 231−236.
(35) Tsai C. Y.; Chung C. H.; and Hong J. L. ACS Omega. 2018, 3, 4423−4432.
(36) Ozeki, T., Yuasa, H., Kanaya, Y. J. Control. Release. 2000, 63, 287−295.
(37) Du, Y.; Qiu, W. Z.; Wu, Z. L.; Ren, P. F.; Zheng, Q.; Xu, Z. K. Adv. Mater. Interfaces. 2016, 15, 1600167−16001673.
(38) Lutkenhaus, J. L.; Hrabak, K. D.; McEnnis, K.; Hammond, P. T. J. Am. Chem. Soc. 2005, 127, 17228−17234.
(39) Coleman, M. M.; Lee, J. Y.; Serman, C. J.; Wang, Z.; Painter, P. C. Polymer, 1989, 30, 1298−1307.
(40) Xiang, F.; Ward, S. M.; Givens, T. M.; Grunlan, J. C. Soft Matter. 2015, 11, 1001−1007.
(41) Chu, W. C.; Chiang, S. F.; Li, J. G.; Kuo, S.W. Materials. 2013, 6, 5077−5093.
(42) Kuo, S. W.; Chang, F. C. Macromolecules. 2001, 34, 4089−4097.
(43) Chen, Y.; Guan, Z. Chem. Commun. 2014, 50, 10868−10870.
(44) Cuthbert, T. J.; Jadischke, J. J.; Bruyn, J. R. d.; Ragogna, P. J.; Gillies, E. R. Macromolecules. 2017, 50, 5253−5260.
(45) Li, J.; Ejima, H.; Yoshie, N. ACS Appl. Mater. Interfaces. 2016, 8, 19047−19053.
(46) Fang, Y.; Du, X.; Du, Z.; Wang, H.; Cheng, X. J. Mater. Chem. A. 2017, 5, 8010−8017.
(47) Li, G., Yan, Q., Xia, H.; Zhao, Y. Physical Hydrogel. ACS Appl. Mater. Interfaces. 2015, 7, 12067−12073.
(48) Yang, Y.; Ding, S.; Araki, T.; Jiu, J.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Nano Research. 2016, 9, 401–414.
(49) Cai, G.; Wang, J.; Qian, K.; Chen, J.; Li, S.; Lee, P. S. Adv. Sci. 2016, 4, 1600190−1600197.
(50) Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T.; Li, J.; Qi, D.; Huang, P.; Huang, J.; Zhang, Y.; Wang, Y.; Li, G.; Tok, J. B.H.; Chen, X.; Bao, Z. J. Am. Chem. Soc. 2018, 140, 5280−5289.
(51) Ding, S.; Jiu, J.; Gao, Y.; Tian, Y.; Araki, T.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; Uchida, H. ACS Appl. Mater. Interfaces. 2016, 8, 6190−6199.
(52) Yu, L.; Yeo J. C.; Soon, R. H.; Yeo, T.; Lee, H. H.; Lim, C. T. ACS Appl. Mater. Interfaces. 2018, 10, 12773−12780.
(53) Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S. G. ACS Nano. 2015, 9, 5929−5936.
(54) Suzuki, K.; Yataka, K.; Okumiya, Y.; Sakakibara, S.; Sako, K.; Mimura, H.; Inoue, Y. ACS Sens. 2016, 1, 817−825.
(55) Zhang, B. Y.; Sheehan, C. J.; Zhai, J.; Zou, G.; Luo, H.; Xiong, J.; Zhu, Y. T.; Jia, Q. X. Adv. Mater. 2010, 22, 3027−3031.
(56) Cai, L.; Li, J.; Luan, P.; Dong, H.; Zhao, D.; Zhang, Q.; Zhang, X.; Tu, M.; Zeng, Q.; Zhou, W.; Xie, S. Adv. Funct. Mater. 2012, 22, 5238−5244.
chapter 2
(1) Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev., 2015, 115, 7196−7239.
(2) Zhang, H.; Wang, C.; Zhu, G.; Zacharia, N. S. ACS Appl. Mater. Interfaces, 2016, 8, 26258–26265.
(3) Gu, Y.; Zacharia, N. S. Adv. Funct. Mater., 2015, 25, 3785–3792.
(4) Madsen, F. B.; Yu, L.; Skov, A. L. ACS Macro Lett., 2016, 5, 1196−1200.
(5) Ihsan, A. B.; Sun, T. L.; Kurokawa, T.; Karobi, S. N.; Nakajima, T.; Nonoyama, T.; Roy, C. K.; Luo, F.; Gong, J. P. Macromolecules, 2016, 49, 4245−4252.
(6) Porcel, C. H.; Schlenoff, J. B. Biomacromolecules, 2009, 10, 2968−2975.
(7) Tirado, A. P.; Roger, E.; Boulmedais, F.; Collin, D.; Voegel, J. C.; Frisch, B.; Schaaf, P.; Schlenoff, J. B. Adv. Funct. Mater., 2013, 23, 673−682.
(8) Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Nat. Mater., 2011, 10, 14−27.
(9) Serpe, M. J.; Craig, S. L. Langmuir, 2006, 23, 1626−1634.
(10) Kumpfer, J.R.; Jin, J.; Rowan, S.J. J. Mater. Chem., 2010, 20, 145–151.
(11) Burnworth, M.; Knapton, D.; Rowan, S.; Weder, C. J. Inorg. Organomet. P., 2007, 17, 91–103.
(12) Kumpfer, J.R.; Rowan, S.J. J. Am. Chem. Soc., 2011, 133, 12866 – 12874.
(13) Liu, S. J.; Chen, Y.; Xu, W. J.; Zhao, Q.; Huang, W. Macromol. Rapid Commun., 2012, 33, 461–480.
(14) Yount, W. C.; Loveless, D. M.; Craig, S. L. J. Am. Chem. Soc., 2005, 127, 14488 – 14496.
(15) Knapton, D.; Iyer, P. K.; Rowan, S. J.; Weder, C. Macromolecules, 2006, 39, 4069 – 4075.
(16) Heijmen, F. H.; Du Pont, J. S.; Middelkoop, E.; Kreis, R. W.; Hoekstra, M. J. Biomaterials, 1997, 18, 749−754.
(17) Shutava, T.; Prouty, M.; Kommireddy, D.; Lvov, Y. Macromolecules, 2005, 38, 2850−2858.
(18) Erel-Unal, I.; Sukhishvili, S. A. Macromolecules, 2008, 41, 3962−3970.
(19) Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Van Koeverden, M. P.; Such, G. K.; Cui, J.; Caruso, F. Science, 2013, 341, 154−157.
(20) Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; Von Elverfeldt, D.; Hagemeyer, C. E.; Caruso, F. Angew. Chem. Int. Ed., 2014, 53, 5546−5551.
(21) Krogsgaard, M.; Hansen, M. R.; Birkedal, H., J. Mater. Chem. B, 2014, 2, 8292−8297.
(22) Holten-Andersen, N.; Jaishankar, A.; Harrington, M. J.; Fullenkamp, D. E.; DiMarco, G.; He, L.; McKinley, G. H.; Messersmith, P. B.; Lee, K. Y. C., J. Mater. Chem. B, 2014, 2, 2467−2472.
(23) Fullenkamp, D. E.; Barrett, D. G.; Miller, D. R.; Kurutz, J. W.; Messersmith, P., RSC Adv., 2014, 4, 25127−25134.
(24) Oh, H. I.; Hoff, J. E.; Armstrong, G. S.; Haff, L. A. J. Agric. Food Chem., 1980, 28, 394−398.
(25) Van Buren, J. P.; Robinson, W. B. J. Agric. Food Chem., 1969, 17, 772-777.
(26) Costa, E.; Coelho, M.; Ilharco, L. M.; Aguiar-Ricardo, A.; Hammond, P. T. Macromolecules, 2011, 44, 612−621.
(27) Shin, M.; Ryu, J. H.; Park, J. P.; Kim, K.; Yang, J. W.; Lee, H. Adv. Funct. Mater., 2015, 25, 1270−1278.
(28) Engelmayr Jr, G. C.; Cheng, M.; Bettinger, C. J.; Borenstein, J. T.; Langer, R.; Freed, L. E. Nat. Mater., 2008, 7, 1003−1008.
(29) Libanori, R.; Erb, R. M.; Reiser, A.; Ferrand, H. L.; Süess, M. J.; Spolenak, R.; Studart, A. R. Nat. Commun., 2012, 3, 1265−1270.
(30) Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Nat. Mater., 2014, 13, 36−41.
(31) Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. Nat. Nanotechnol., 2012, 7, 825−832.
(32) Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L. Adv. Sci., 2015, 2, 1500169−1500173.
(33) Rong, Q.; Lei, W.; Chen, L.; Yin, Y.; Zhou, J.; Liu, M. Angew. Chem., 2017, 56, 14159−14163.
(34) Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. J. Polym. Sci., 2018,1, 1−14.
(35) Wang, C.; Liu, N.; Allen, R.; Tok, J. B. H.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. Adv. Mater., 2013, 25, 5785−5790.
(36) Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Adv. Mater., 2014, 26, 1336−1342.
(37) Duan, J.; Liang, X.; Guo, J.; Zhu, K.; Zhang, L. Adv. Mater., 2016, 28, 8037−8044.
(38) Fu, X.; Dong, H.; Zhen, Y.; Hu, W. Small, 2015, 11, 3351−3356.
(39) Guo, Y.; Zhou, X.; Tang, Q.; Bao, H.; Wang, G.; Saha, P. J. Mater. Chem. A, 2016, 4, 8769−8776.
(40) Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. Adv. Mater., 2017, 29, 1605099−1605105.
(41) Keplinger, C.; Sun, J.Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Science, 2013, 341, 984−987.
(42) Chen, Q.; Zhu, L.; Chen, H.; Yan, H.; Huang, L.; Yang, J.; Zheng, J. Adv. Funct. Mater., 2015, 25, 1598−1607.
(43) Liu, G.; He, S. C.; Wang, H. Macromol. Rapid Commun., 2013, 34, 1002−1007.
(44) Peng, Y.; Zheng, Z.; Sun, P.; Wang, X.; Zhang, T. New J. Chem., 2013, 37, 729−734.
(45) He, X.; Zhang, C.; Wang, M.; Zhang, Y.; Liu, L.; Yang, W. ACS Appl. Mater. Interfaces, 2017, 9, 11134−11143.
(46) Fan, H.; Wang, L.; Feng, X.; Bu, Y.; Wu, D.; Jin, Z. Macromolecules, 2017, 50, 666−676.
chapter 3
(1) White, S. R.; Caruso, M. M.; Moore, J. S. MRS Bull., 2008, 33, 766–769.
(2) Bond, I. P.; Trask, R. S.; Williams, H. R. MRS Bull., 2008, 33, 770–774.
(3) Murphy, E. B.; Wudl, F. Prog. Polym. Sci., 2010, 35, 223–251.
(4) Burattini, S.; Greenland, B. W.; Chappell, D.; Colquhoun, H. M.; Hayes, W. Chem. Soc. Rev., 2010, 39, 1973–1985.
(5) Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C. Macromol. Chem. Phys., 2012, 213, 131–143.
(6) White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature, 2001, 409, 794–797.
(7) Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. Nat. Mater., 2007, 6, 581–585.
(8) Ghosh, B.; Urban, M. W. Science, 2009, 323, 1458–1460.
(9) Ghosh, B.; Chellappan, K. V.; Urban, M. W. J. Mater. Chem., 2011, 21, 14473–14486.
(10) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. Science, 2002, 295, 1698–1702.
(11) Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nutt, S. R. Macromolecules, 2003, 36, 1802–1807.
(12) Murphy, E. B.; Bolanos, E.; Schaffner-Hamann, C.; Wudl, F.; Nutt, S. R.; Auad, M. L. Macromolecules, 2008, 41, 5203–5209.
(13) Reutenauer, P.; Buhler, E.; P. Boul, J.; Candau, S. J.; Lehn, J. M. Chem. Eur. J., 2009, 15, 1893–1900.
(14) Chung, C.; Roh, Y.; Cho, S.; Kim, J. Chem. Mater., 2004, 16, 3982–3984.
(15) Ling, J.; Rong, M. Z.; Zhang, M. Q. J. Mater. Chem., 2011, 21, 18373–18380.
(16) Ling, J.; Rong, M. Z.; Zhang, M. Q. Polymer, 2012, 53, 2691–2698.
(17) Imato, K.; Nishihara, M.; Kanekara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem., Int. Ed., 2012, 51, 1138–1142.
(18) Yuan, C.; Rong, M. Z.; Zhang, M. Q.; Zhang, Z. P.; Yuan, Y. C. Chem. Mater., 2011, 23, 5076–5081.
(19) Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Angew. Chem., Int. Ed., 2011, 50, 1660–1663.
(20) Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Adv. Mater., 2012, 24, 3975–3980.
(21) Zheng, P.; McCarthy, T. J. J. Am. Chem. Soc., 2012, 134, 2024–2027.
(22) Lu, Y.; Guan, Z. J. Am. Chem. Soc., 2012, 134, 14226–14231.
(23) Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun., 2014, 5, 3218–3227.
(24) Cordier, P.; Tournilhac, F.; Soulie-Ziakoic, C.; Leibler, L. Nature, 2008, 451, 977–980.
(25) Herbst, F.; Seiffert, S.; Binder, W. H. Polym. Chem., 2012, 3, 3084–3092.
(26) Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Nat. Chem., 2012, 4, 467–472.
(27) Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z. Angew. Chem., Int. Ed., 2012,
51, 10561–10565.
(28) Burattini, S.; Colquhoun, H. M.; Creenland, B. W.; Hayes, W. Faraday Discuss., 2009, 143, 251–264.
(29) Burattini, S.; Colquhoun, H. M.; Fox, F. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J. F.; Hayes, W.; Mackay, M. E.; Rowan, S. J. Chem. Commun., 2009,11, 6717–6719.
(30) Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J. J. Am. Chem. Soc., 2010, 132, 12051–12058.
(31) Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L. Rowan, S. J.; Weder, C. Nature, 2011, 472, 334–337.
(32) Bode, S.; Zedler, L.; Schacher, F. H.; Dietzek, B.; Schmitt, M.; Popp, J.; Hager, M. D.; Schubert, U. S. Adv. Mater., 2013, 25, 1634–1638.
(33) Hong, G.; Zhang, H.; Lin, Y.; Chen, Y.; Xu, Y.; Weng, W.; Xia, H. Macromolecules, 2013, 46, 8649–8656.
(34) Kalista, S. J.; Ward, T. C.; Oyetunji, Z. M. Adv. Mater. Struct., 2007, 14, 391–397.
(35) Hoogenboom, R. Angew. Chem., Int. Ed., 2012, 51, 11942–11944.
(36) Chen, Y.; Guan, Z. Chem. Commun., 2014, 50, 10868–10870.
(37) Li, L.; Yan, B.; Yang, J.; Huang, W.; Chen, L.; Zeng, H. ACS Appl. Mater. Interfaces, 2017, 9, 9221−9225.
(38) Haldar, U.; Bauri, K.; Li, R.; Faust, R.; De, P. ACS Appl. Mater. Interfaces, 2015, 7, 8779−8788.
(39) Zhang, G.; Chen, Y.; Deng, Y.; Ngai, T.; Wang, C. ACS Macro Lett., 2017, 6, 641−646.
(40) Cui, J.; Campo, A. Chem. Commun., 2012, 48, 9302–9304.
(41) Ko, J.; Kim, Y. J.; Kim, Y. S. ACS Appl. Mater. Interfaces, 2016, 8, 23854−23861.
(42) Li, Y.; Pan, T.; Ma, B.; Liu, J.; Sun, J. ACS Appl. Mater. Interfaces, 2017, 9, 14429−14436.
(43) Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z. Angew. Chem. Int. Ed., 2012, 51, 10561–10565.
(44) Neal, J. A.; Mozhdehi, D.; Guan, Z. J. Am. Chem. Soc., 2015, 137, 4846−4850.
(45) Li, J.; Ejima, H. Yoshie, N. ACS Appl. Mater. Interfaces, 2016, 8, 19047−19053.
(46) Xiang, Z.; Zhang, L.; Li, Y.; Yuan, T.; Zhang, W.; Sun, J. ACS Nano, 2017, 11, 7134−7141.
(47) Enke, M.; Bose, R. K.; Bode, S.; Vitz, J.; Schacher, F. H.; Garcia, S. J.; Zwaag, S.; Hager, M. D.; Schubert, U. S. Macromolecules, 2016, 49, 8418−8429.
(48) Rodriguez, E. D.; Luo, X.; Mather, P. T. ACS Appl. Mater. Interfaces, 2011, 3, 152–161.
(49) Phadkea, A.; Zhanga, C.; Armanb, B.; Hsuc, C. C.; Mashelkard, R. A.; Leled, A. K.; Tauberc, M. J.; Aryab, G.; Varghese, S. PNAS., 2012, 12, 4383–4388.
(50) Luo, Y. L.; Yu, W.; Xu, F.; Zhang, L.L. Journal of Polymer Science Part A Polymer Chemistry, 2012, 50, 2053–2067.
(51) Sun, Y.; Peng, Z.; Liu, X.; Tong, Z. Colloid Polym Sci, 2010, 288, 997–1003.
(52) Kuo, S. W.; Chang, F. C. Macromolecules, 2001, 34, 4089–4097
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code