Responsive image
博碩士論文 etd-0707118-155606 詳細資訊
Title page for etd-0707118-155606
論文名稱
Title
探討 Connexin 32 影響斑馬魚胚胎血管發育的分子機轉
Characterization of the roles of Connexin 32 in zebrafish vascular development
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-02
繳交日期
Date of Submission
2018-08-07
關鍵字
Keywords
血管新生、斑馬魚、連接蛋白、尾部靜脈叢、區間血管
VEGF signal pathway, CVP, ISV, Connexin, zebrafish, angiogenesis, BMP signal pathway
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
血管的生長發育在胚胎發育過程中扮演重要角色,而利用斑馬魚作為模式生物可以方便探討基因如何調控血管生成。我們實驗室先前發現轉錄因子isl2/nr2f1b 調控血管發育;而利用微陣列分析出 Connexin 32 受到 isl2/nr2f1b 的調控。在脊椎動物中,由連接蛋白 (Connexin, cx) 所組成的間隙連接孔道來傳遞相鄰細胞之間的離子、小分子營養物質及訊息傳遞分子,以調節發育過程中細胞增殖、分化和遷移。cx32 的缺陷在一些病理症狀上有些異常現象的發生,文獻也指出 cx32 對小鼠受傷後血管的新生成有所影響,然而針對血管發育的研究卻是沒有的,此外,cx32 影響血管生成的訊息路徑到目前為止也尚未釐清。
比對 cx32 胺基酸序列,發現有兩個功能區在脊椎動物中保守性高。原位組織染色顯示其主要表現在頭部、初級血管環路的軀幹及尾部的部分,可見 cx32 對斑馬魚血管的生長發育可能有影響。注射 cx32 ATG morpholino 於斑馬魚胚胎,會造成胚胎血管生長上的缺陷,還有心包膜水腫和血液循環受阻的現象。TUNEL assay 與 AO staining 則顯示弱化 cx32 的表現會增加細胞凋亡,但位置可能不在血管內皮細胞處。藉由共軛交顯微鏡我們也觀察到斑馬魚區間血管中沒有絲狀偽足的產生,同時血管支數與細胞數的數量有明顯減少,說明弱化 cx32 會抑制細胞的移動和增生的能力。且動靜脈相關基因標記的表現量下降,但不會影響到神經、體節和心臟的基因標記表現。這些結果顯示,缺少 cx32 不利於血管生長。過度表現 cx32 不會影響胚胎血管發育,但可以回復 cx32MO 所造成的缺陷,顯示 cx32ATG morpholino 對於斑馬魚血管具有專一性。相關的訊息路徑探討方面,我認為缺少了 cx32 會降低 VEGF 和 BMP 訊息路徑。但 westen blot 結果顯示在 cx32 morphants 中 VEGF 和 BMP 訊息路徑相關蛋白表現量有很明顯的上升趨勢,推測可能是血管缺陷所導致的回饋補償作用。總結以上結果,發現 cx32 基因表現對斑馬魚胚胎血管發育過程中,扮演重要的角色。
Abstract
The process of vascular development in vertebrates are mainly divided into vasculogenesis and angiogenesis. We previously identified the transcription factors Islet2 (isl2) and Nr2f1b were required for the growth of intersegmental vessels (ISV) and caudal vein plexus (CVP) in zebrafish. Microarray analysis showed Connexin 32 is regulated by Isl2/Nr2f1b. Gap junction protein Connexins32 (cx32) has been shown to function on the blood vessels in injured mice and to enhance angiogenesis in cell-based study, however, there is no study about the vascular development in vivo. In addition, signal pathways related to cx32 and angiogenesis have not been clarified. In this study, we first showed cx32 mRNA is expressed in developing vessels from 18S to 30hpf stages, suggesting its roles in zebrafish vascular development.
Knockdown of cx32 by morpholino injection caused vascular defects in ISV and CVP, suggesting the role of cx32 in vascular growth. TUNEL assay showed that vascular defects were not caused by cell death, but likely due to the impairment of endothelial cell proliferation and migration. Consistent with vascular growth defects, loss of cx32 affected the expression of the vascular markers flt4, mrc1, flk, stabilin, and ephrinb2. Furthermore, overexpression of cx32 did not impair the vascular growth, but could rescue the cx32 morphant, validating the specificity of morpholino knockdown. Finally, we examined the interaction between cx32 and multiple signals and observed that cx32 was regulated by VEGF signals for ISV growth, and BMP signals for CVP patterning.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
圖次 vii
表次 viii
縮寫 ix
壹、前言 1
一、心血管系統 1
二、斑馬魚作為模式生物 1
三、斑馬魚血管發育 2
四、Connexin 3
五、VEGF signal pathway 3
六、BMP signal pathway 4
貳、實驗材料與方法 5
一、斑馬魚 5
二、顯微注射 (microinjection) 5
三、質體構築 6
四、plasmid 萃取 7
五、mRNA 合成 7
六、探針合成 8
七、原位組織雜交染色 (in situ hybridization) 9
八、冷凍切片 10
九、Total RNA 萃取 (Genemark RNA KIT) 10
十、cDNA 製備 (Roche cDNA KIT) 11
十一、聚合酶連鎖反應 (PCR) 11
十二、即時定量聚合酶連鎖反應 (q-PCR) 12
十三、DNA 電泳 12
十四、DNA 純化 13
十五、TUNEL assay 13
十六、AO (Acridine Orange) staining 13
十七、蛋白質萃取 14
十八、西方墨點法 (western blot) 14
十九、影像拍攝 15
二十、統計分析 15
參、實驗結果 16
一、研究動機和實驗假說 16
二、cx32 序列分析與基因表現 16
1.cx32 序列比對與功能區 16
2.cx32 mRNA 在斑馬魚胚胎發育過程中的表現位置 17
三、Knockdown cx32 對胚胎血管發育的影響 17
1.弱化 cx32 造成斑馬魚血管發育缺陷 17
2.弱化 cx32 血管缺陷後出現心包膜種大與血液循環缺陷 18
3.弱化 cx32 造成血管缺陷並非由細胞凋亡導致 19
4.弱化 cx32 造成細胞遷移受到抑制 19
5.弱化 cx32 造成細胞增生受到抑制 20
6.弱化 cx32 會降低動靜脈基因 marker 的表現量 20
7.弱化 cx32 不會影響胚胎其他器官發育 21
四、cx32ATG morpholino 專一性 21
五、過度表現 cx32 不會影響胚胎血管發育 22
六、弱化 cx32 會增加 VEGF 和 BMP 下游訊號的表現 23
肆、問題討論 24
一、cx32 調控血管發育的分子機制 24
二、cx32 與 actin, myosin 所影響之功能與訊息關聯性 24
三、cx32 與人類內皮細胞的功能相近 25
四、斑馬魚與人類 cx32 親緣關係之更新 25
伍、圖 27
陸、表 44
柒、參考文獻 47
附件一、脈管生成 (vasculogenesis) 及血管新生 (angiogenesis) 56
附件二、斑馬魚血管新生示意圖 57
附件三、血管內皮生長因子家族成員及其受體 58
附件四、BMP 訊息傳遞 59
附件五、connexin 結構 60
附件六、Pentabromopseudilin (PBP) 60
附件七、PBP 處理胚胎造成血管缺陷 61
附件八、弱化 cx32 與 PBP 的共抑制效果 62
附件九、TOPO-cx32 63
附件十、pDONR221-cx32 64
附件十一、pCSDest-cx32 65
附件十二、藥品配製 66
附件十三、SDS-Polyacrylamide gel 71
參考文獻 References
1. Tu S. and Chi N. C., Zebrafish models in cardiac development and congenital heart birth defects. Differentiation, 2012. 84(1): p. 4-16.
2. Gore A. V., Monzo K., Cha Y. R., Pan W. and Weinstein B. M., Vascular development in the zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006684.
3. Asnani A. and Peterson R. T., The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech, 2014. 7(7): p. 763-767.
4. Fang L., Liu C. and Miller Y. I., Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis. Transl Res, 2014. 163(2): p. 99-108.
5. Tobia C., De Sena G. and Presta M., Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol, 2011. 55(4-5): p. 505-509.
6. Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
7. Lieschke G. J. and Currie P. D., Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-367.
8. Isogai S., Horiguchi M. and Weinstein B. M., The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol, 2001. 230(2): p. 278-301.
9. Eichmann A., Yuan L., Moyon D., Lenoble F., Pardanaud L., et al., Vascular development: from precursor cells to branched arterial and venous networks. Int J Dev Biol, 2005. 49(2-3): p. 259-267.
10. Lawson N. D. and Weinstein B. M., Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674-682.
11. Kume T., Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol, 2010. 25(5): p. 637-646.
12. Lawson N. D., Scheer N., Pham V. N., Kim C. H., Chitnis A. B., et al., Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001. 128(19): p. 3675-3683.
13. You L. R., Lin F. J., Lee C. T., DeMayo F. J., Tsai M. J., et al., Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 2005. 435(7038): p. 98-104.
14. Gerhardt H., Golding M., Fruttiger M., Ruhrberg C., Lundkvist A., et al., VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 2003. 161(6): p. 1163-1177.
15. Isogai S., Lawson N. D., Torrealday S., Horiguchi M. and Weinstein B. M., Angiogenic network formation in the developing vertebrate trunk. Development, 2003. 130(21): p. 5281-5290.
16. Ellertsdottir E., Lenard A., Blum Y., Krudewig A., Herwig L., et al., Vascular morphogenesis in the zebrafish embryo. Dev Biol, 2010. 341(1): p. 56-65.
17. Schuermann A., Helker C. S. and Herzog W., Angiogenesis in zebrafish. Semin Cell Dev Biol, 2014. 31: p. 106-114.
18. Kashiwada T., Fukuhara S., Terai K., Tanaka T., Wakayama Y., et al., beta-Catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development, 2015. 142(3): p. 497-509.
19. Wakayama Y., Fukuhara S., Ando K., Matsuda M. and Mochizuki N., Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell, 2015. 32(1): p. 109-122.
20. Wiley D. M., Kim J. D., Hao J., Hong C. C., Bautch V. L., et al., Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol, 2011. 13(6): p. 686-692.
21. Kumar N. M. and Gilula N. B., The gap junction communication channel. Cell, 1996. 84(3): p. 381-388.
22. Baranova A., Ivanov D., Petrash N., Pestova A., Skoblov M., et al., The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics, 2004. 83(4): p. 706-716.
23. Ayad W. A., Locke D., Koreen I. V. and Harris A. L., Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem, 2006. 281(24): p. 16727-16739.
24. Laird D. W., Life cycle of connexins in health and disease. Biochem J, 2006. 394(Pt 3): p. 527-543.
25. Mei L., Chen J., Zong L., Zhu Y., Liang C., et al., A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis, 2017. 108: p. 195-203.
26. Gollob M. H., Jones D. L., Krahn A. D., Danis L., Gong X. Q., et al., Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med, 2006. 354(25): p. 2677-2688.
27. Srinivas M., Kronengold J., Bukauskas F. F., Bargiello T. A. and Verselis V. K., Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J, 2005. 88(3): p. 1725-1739.
28. Shibuya M., Tyrosine Kinase Receptor Flt/VEGFR Family: Its Characterization Related to Angiogenesis and Cancer. Genes Cancer, 2010. 1(11): p. 1119-1123.
29. Koch S., Tugues S., Li X., Gualandi L. and Claesson-Welsh L., Signal transduction by vascular endothelial growth factor receptors. Biochem J, 2011. 437(2): p. 169-183.
30. Olofsson B., Korpelainen E., Pepper M. S., Mandriota S. J., Aase K., et al., Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11709-11714.
31. Ogawa S., Oku A., Sawano A., Yamaguchi S., Yazaki Y., et al., A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem, 1998. 273(47): p. 31273-31282.
32. Wang R. N., Green J., Wang Z., Deng Y., Qiao M., et al., Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis, 2014. 1(1): p. 87-105.
33. Dyer L. A., Pi X. and Patterson C., The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab, 2014. 25(9): p. 472-480.
34. Deckers M. M., van Bezooijen R. L., van der Horst G., Hoogendam J., van Der Bent C., et al., Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 2002. 143(4): p. 1545-1553.
35. Norrie J. L., Lewandowski J. P., Bouldin C. M., Amarnath S., Li Q., et al., Dynamics of BMP signaling in limb bud mesenchyme and polydactyly. Dev Biol, 2014. 393(2): p. 270-281.
36. Schiza N., Sargiannidou I., Kagiava A., Karaiskos C., Nearchou M., et al., Transgenic replacement of Cx32 in gap junction-deficient oligodendrocytes rescues the phenotype of a hypomyelinating leukodystrophy model. Hum Mol Genet, 2015. 24(7): p. 2049-2064.
37. Wasseff S. K. and Scherer S. S., Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis, 2011. 42(3): p. 506-513.
38. Okamoto T., Akita N., Kawamoto E., Hayashi T., Suzuki K., et al., Endothelial connexin32 enhances angiogenesis by positively regulating tube formation and cell migration. Exp Cell Res, 2014. 321(2): p. 133-141.
39. Oshima A., Tani K., Hiroaki Y., Fujiyoshi Y. and Sosinsky G. E., Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10034-10039.
40. Hebert C. and Stains J. P., An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells. J Cell Biochem, 2013. 114(11): p. 2542-2550.
41. Kamei M., Saunders W. B., Bayless K. J., Dye L., Davis G. E., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-456.
42. Zhao B., Zhao W., Wang Y., Xu Y., Xu J., et al., Connexin32 regulates hepatoma cell metastasis and proliferation via the p53 and Akt pathways. Oncotarget, 2015. 6(12): p. 10116-10133.
43. Iwamoto T., Nakamura T., Ishikawa M., Yoshizaki K., Sugimoto A., et al., Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS One, 2017. 12(5): p. e0177557.
44. Elias L. A., Wang D. D. and Kriegstein A. R., Gap junction adhesion is necessary for radial migration in the neocortex. Nature, 2007. 448(7156): p. 901-907.
45. Huang Y., Shi H., Zhou H., Song X., Yuan S., et al., The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood, 2006. 107(9): p. 3564-3571.
46. Tiwari A., Jung J. J., Inamdar S. M., Nihalani D. and Choudhury A., The myosin motor Myo1c is required for VEGFR2 delivery to the cell surface and for angiogenic signaling. Am J Physiol Heart Circ Physiol, 2013. 304(5): p. H687-696.
47. Okamoto T., Akiyama M., Takeda M., Gabazza E. C., Hayashi T., et al., Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem Biophys Res Commun, 2009. 382(2): p. 264-268.
48. Wimmer R., Cseh B., Maier B., Scherrer K. and Baccarini M., Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-alpha complex. Dev Cell, 2012. 22(1): p. 158-171.
49. Wall M. E., Otey C., Qi J. and Banes A. J., Connexin 43 is localized with actin in tenocytes. Cell Motil Cytoskeleton, 2007. 64(2): p. 121-130.
50. Okamoto T., Akita N., Hayashi T., Shimaoka M. and Suzuki K., Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells. Atherosclerosis, 2014. 236(2): p. 430-437.
51. Okamoto T. and Suzuki K., The Role of Gap Junction-Mediated Endothelial Cell-Cell Interaction in the Crosstalk between Inflammation and Blood Coagulation. Int J Mol Sci, 2017. 18(11).
52. Watanabe M., Gap Junction in the Teleost Fish Lineage: Duplicated Connexins May Contribute to Skin Pattern Formation and Body Shape Determination. Front Cell Dev Biol, 2017. 5: p. 13.
53. Fang J. S., Coon B. G., Gillis N., Chen Z., Qiu J., et al., Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun, 2017. 8(1): p. 2149.
54. Allagnat F., Dubuis C., Lambelet M., Le Gal L., Alonso F., et al., Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation. Cardiovasc Res, 2017. 113(7): p. 805-816.
55. Liu K., Rajareddy S., Liu L., Jagarlamudi K., Boman K., et al., Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol, 2006. 299(1): p. 1-11.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code