Responsive image
博碩士論文 etd-0707118-224841 詳細資訊
Title page for etd-0707118-224841
論文名稱
Title
鋁合金與碳化矽陶瓷板材之摩擦攪拌點銲接合特性的研究
Studies on Joint Characteristics of Al Alloy and SiC Plates Using Friction Stir Spot Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-16
關鍵字
Keywords
下壓負荷、下壓深度、預熱溫度、碳化矽陶瓷、鋁合金、摩擦攪拌點銲
aluminum alloy, silicon carbide ceramics, friction stir spot welding, plunge depth, downward force, preheating temperature
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
本研究使用摩擦攪拌銲接機,和直徑12 mm之高速鋼銲接工具,對厚度3 mm之6061-T6鋁合金與厚度5 mm之碳化矽陶瓷板進行摩擦攪拌點銲之搭接實驗。為避免銲接過程中產生的局部高溫使碳化矽陶瓷因熱衝擊而破裂,使用加熱塊對試片進行預熱。本研究探討之銲接參數有,銲接工具轉速(400、600、800 rpm)、預熱界面溫度(180、270、360、440 °C)以及工具下壓深度(0.4 ~ 1.6 mm),對銲接過程的下壓負荷及與合金與碳化矽界面溫度進行量測,最後對試片進行拉剪測試。本研究探討銲接參數對接合特性的影響,主要的研究成果如下。
銲接過程中下壓負荷達最大值時,界面的溫度達到初始飽和值。當銲接工具轉速提升時,溫升速率會隨轉速增加而提高。在預熱界面溫度越高的情況下,界面達到的最大飽和溫度亦越高。在銲接工具轉速及預熱界面溫度固定,改變下壓深度(0.4 ~ 1.6 mm ),對最大下壓負荷之影響不顯著。銲接工具轉速及預熱界面溫度皆會影響產熱,在高轉速及高預熱界面溫度下,如轉速800 rpm及預熱440°C時,最大下壓負荷為2.2 kN,最大界面飽和溫度為577°C。
預熱界面溫度必須在180°C以上,方能避免陶瓷因熱衝擊而破裂。在預熱界面溫度低時,需要較多的下壓深度才能使塑性流動層到達界面以達成接合。最佳破壞負荷為1.4 kN,當銲接時間增長,因微裂痕產生的缺陷越嚴重,微裂痕從陶瓷銲點邊緣開始增生,最後擴展至整個銲點下陶瓷,因此破壞負荷降至0.3 kN,可見微裂痕會大幅降低接合的強度。SEM拍攝顯示,以摩擦攪拌接合鋁合金及碳化矽,接合原理為機械錨固作用,藉塑性流動,將軟化的鋁合金擠入碳化矽表面的孔洞中,以達成接合。
Abstract
In this study, friction stir spot welding of 3 mm thick 6061-T6 Al alloy on 5 mm thick silicon carbide ceramic plate was conducted using a high-speed steel tool with a diameter of 12 mm. In order to avoid the cracks of silicon carbide ceramics because of the local high temperature generated during the welding process, the specimens were preheated using a heating block. The welding parameters include rotation speed of tool (400, 600, 800 rpm), preheating temperature (180, 270, 360, 440 °C), and plunge depth (0.4 ~ 1.6 mm). During the welding process, the downward force and the interface temperature were measured. After welding, the specimens were subjected to the shear test. This study explores effects of welding parameters on joint properties.
When the downward force reached the maximum during the welding process, the interface temperature achieved a saturation value. The rate of temperature rise increased along with rotation speed. The higher the preheating temperature, the higher the maximum saturation value of interface temperature. With a fixed rotation speed and the preheating temperature, the effect of plunge depth (0.4 ~ 1.6 mm) on the maximum downward force was not significant. The rotation speed and the preheating interface temperature affected the heat generation. At a high rotation speed of 800 rpm and a high preheating temperature of 440 °C, the maximum downward force was 2.2 kN, and the maximum saturation interface temperature was 577 ° C.
The preheating temperature should be more than 180 °C to avoid the cracks of ceramics due to thermal shock. When the preheating temperature was low, more plunge depth was required to allow the plastic flow zone in achieving the interface to bond the Al alloy and the ceramics. The maximum failure load was 1.4 kN. When the welding time increased, the defects caused by micro-cracks became more serious. The micro-cracks of ceramics under the tool started to accumulate from the edge to the entire ceramics, in which the failure load was reduced to 0.3 kN. Results showed that micro-cracks greatly reduced the strength of the joint. The SEM photograph showed that the join mechanism between the Al alloy and the silicon carbide was mechanical anchoring. The softened Al alloy was extruded into the hole on the surface of the silicon carbide to achieve this mechanical anchoring.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 viii
表次 xiv
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.2.1 鋁合金簡介 3
1.2.2 鋁合金的析出硬化性質 7
1.2.3碳化矽陶瓷的熱衝擊性質及破裂特性 8
1.2.4金屬與陶瓷的接合方法 13
1.3研究動機 22
第二章 實驗設備與實驗方法 23
2.1實驗設備 23
2.1.1實驗機台 23
2.1.1.1主軸模組 24
2.1.1.2夾持模組 24
2.1.1.3負荷量測模組 24
2.1.2試片夾持治具設計 25
2.1.3溫度加熱裝置的設計與控制 26
2.1.4摩擦攪拌點銲接之實驗試片與銲接工具 27
2.1.4.1實驗試片之幾何外觀與材料特性 27
2.1.4.2銲接工具之幾何外觀與材料特性 29
2.2實驗方法 30
2.2.1實驗參數規劃 30
2.2.2銲接位置 31
2.2.3實驗程序 32
2.3拉剪強度試驗 33
2.4試片預熱之界面溫度校正及銲接過程之界面溫度量測 34
2.6實驗流程 36
第三章 實驗結果與討論 37
3.1銲接過程之界面溫度、下壓深度及工具轉速對下壓負荷之影響 37
3.1.1不同銲接參數對下壓負荷與界面溫度之影響 38
3.1.2下壓深度對下壓負荷之影響 44
3.1.3預熱界面溫度對下壓負荷之影響 49
3.1.4銲接工具轉速對下壓負荷之影響 54
3.2不同銲接參數之銲接結果 61
3.3不同下壓深度對銲點強度之影響 65
3.4銲接結果之SEM觀察 79
3.4.1銲接界面之SEM觀察 79
3.4.2微裂痕之SEM觀察 83
第四章 結論與未來展望 87
4.1結論 87
4.2未來規劃 89
參考文獻 90
參考文獻 References
[1] I. N. Fridlyander, V. G. Sister, O. E. Grushko, V. V. Berstenev, L. M. Sheveleva and L. A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Metal Science and Heat Treatment, Vol. 44, No. 9 (2002) 365-370.
[2] J. Hirsch, Recent development in aluminium for automotive applications, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 7 (2014) 1995-2002.
[3] J. A. Kingsly Gladston, I. Dinaharan, N. Mohamed Sheriff and J. David Raja Selvam, Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting, Journal of Asian Ceramic Societies, Vol. 5, No. 2 (2017) 127-135.
[4] A. Radha and K.R. Vijayakumar, An investigation of mechanical and wear properties of AA6061 reinforced with silicon carbide and graphene nano particles-Particulate composites, Materials Today: Proceedings, Vol. 3, No. 6 (2016) 2247-2253.
[5] C.M. Abreu, M.J. Cristóbal, R. Figueroa and G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation, Applied Surface Science, Vol. 327 (2015) 51-61.
[6] G.A. Zhang, L.Y. Xu and Y.F. Cheng, Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glyco-water solution by impingement jet system, Corrosion Science, Vol. 51, No. 2 (2009) 283-290.
[7] S. Karabay, M. Yilmaz and M. Zeren, Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA-6101 from the billets homogenised-rapid quenched and as-cast conditions, Journal of Materials Processing Technology, Vol. 160, No. 2 (2005) 138-147.
[8] R.P. Garrett, J. Lin and Y.A. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling, International Journal of Plasticity, Vol. 21, No. 8 (2005) 1640-1657.
[9] J. C. Williams and R. A. Starke Jr., Progress in structural materials for aerospace systems, Acta Materialia, Vol. 51, No. 19 (2003) 5775-5799.
[10] A Heinz, A Haszler, C Keidel, S Moldenhauer, R Benedictus and W.S Miller, Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A, Vol. 280, No. 1 (2000) 102-107.
[11] J.T. Staley and D.J. Lege, Advances in aluminium alloy products for structural applications in transportation, J. Phys. IV France, Vol. 03, No. C7 (1993) 179-190.
[12] A. Ambroziak and M. Korzeniowski, Using Resistance Spot Welding for Joining
Aluminium Elements in Automotive Industry, Archives of Civil and Mechanical Engineering, Vol. 10, No. 1 (2010) 5-13.
[13] G.S. Cole and A.M. Sherman, Light weight materials for automotive applications, Materials Characterization, Vol. 35, No. 1 (1995) 3-9.
[14] E.A. Starke Jr. and J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences, Vol. 32, No. 2-3 (1996) 131-172.
[15] W.S Miller, L Zhuang, J Bottema, A.J Wittebrood, P De Smet, A Haszler and A Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, Vol. 280, No. 1 (2000) 37-49.
[16] D. Bardel, M. Perez, D. Nelias, S. Dancette, P. Chaudet and V. Massardier, Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modelling, Acta Materialia, Vol. 83, (2015) 256-268.

[17] R. Hashemi and G. Hussain, Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: A comparison of tool geometries and number of passes, Wear, Vol. 324-325 (2015) 45-54.
[18] M. Walczak, D. Pieniak and M. Zwierzchowski, The tribological characteristics of SiC particle reinforced aluminium composites, Archives of Civil and Mechanical Engineering, Vol. 15, No. 1 (2015) 116-123.
[19] F.Y. Cheng, Erosion-accelerated corrosion in flow systems: the behavior of aluminum alloys in automotive cooling systems, Tribocorrosion of Passive Metals and Coatings, Woodhead Publishing, (2011) 475-497.
[20] X. Chen, W. Tian, S. Li, Y. Mei and J.H. Liu, Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution, Chinese Journal of Aeronautics, Vol. 29, No. 4 (2016) 1142-1150.
[21] 孫偉勝, 添加合金元素對6061鑄造鋁合金為結構及機械性質影響, 國立虎尾科技大學材料科學與綠色能源工程研究, 雲林, (2012).
[22] J. Hirsch, B. Skrotzki and G. Gottstein, Aluminium Alloys: Their Physical and Mechanical Properties, John Wiley & Sons, Vol. 1 (2008).
[23] 鄭慶民, 熱處理型鋁合金銲接特性之研究, 國立交通大學機械工程研究所, 台南, (2005).
[24] K.V. Jata and S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Materialia, Vol. 43, No. 8 (2000) 743-749.
[25] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling and C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Materialia, Vol. 36, No. 1 (1997) 69-75.
[26] G.A. Schneider, Thermal Shock Criteria for Ceramics, Ceramics International, Vol. 17, Issue. 6 (1991) 325-333.
[27] S. Ding, Y.P. Zeng and D.L. Jiang, Thermal Shock resistance of in situ bonded porous silicon carbide ceramics, Materials Science and Engineering: A, Issue. 1-2, No. 13-14 (2006) 326-329.
[28] Y.Q. Tan, S.Q. Jiang, S.J. Nie, D.M. Yang, G.F. Zhang and R.T. Peng, Prestress Scratching on SiC, Ceramic International Journal of Applied Ceramic Technolgy, Vol. 9 (2012) 322–328.
[29] H.Q. Liang, X.M. Yao, Z.G. Huang, Y.P. Zeng and B.Z. Su, Thermal shock behavior of pressureless liquid phase sintered SiC ceramics, Ceramics International, Vol.42 (2016) 8677–8683.
[30] X. Yang, X.J. Liu, L.J. Wang, H. Zhang, X.M. Yao and Z.G. Huang, Effects of artificial defect on the material residual strength of SiC ceramics after thermal-shock, Materials Science & Engineering A, Vol. 707 (2017) 159-163.
[31] T. Ogasawara and M. Ando, Research and Development Activities of Ceramics/Metal Joining, Journal of the Japan welding Society, Vol. 60, No. 1 (1991) 36-42.
[32] M. Nakahashi, Joining of Ceramics to Metals [1] - Interfacial reactions between ceramics and metals, Journal of the Japan welding Society, Vol. 65, No. 3 (1996) 6-11.
[33] K. Suganuma, Joining Ceramics and Metals, Handbook of Advanced Ceramics (Second Edition), (2013) 775–788.
[34] T. Sakthivel and J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, Journal of Materials Science, Vol. 42, No. 19 (2007) 8126-8129.
[35] A. Shrivastava, M. Krones and F.E. Pfefferkorna, Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum, Journal of Manufacturing Science and Technology,
Vol. 9, (2015) 159-168.
[36] A.A. Essa and A.S. Bahrani, The friction joining of ceramics to metals, Journal of Materials Processing Technology, Vol. 26, No. 2 (1991) 133-140.
[37] M.N. Ahmad Fauzi, M.B. Uday, H. Zuhaialawati and A.B. Ismail, Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding, Materials & Design, Vol. 31, No. 2 (2010) 670-676.
[38] 許弘明, 鋁合金與氧化鋁板之摩擦攪拌點接合特性研究, 國立中山大學機械與機電工程研究所, 高雄, (2017)
[39] K. Hamada, M. Kureishi, M. Ueda, T. Enjo and K. Ikeuchi, Diffusion Bonding of Alumina Ceramics to Carbon Steel, 溶接学会論文集, 第3巻, 第3号 (1985) 483-490.
[40] A. Levy, Thermal Residual Stresses in Ceramic-to-Metal Brazed Joints, Journal of the American Ceramic Society, Vol, 74, No.9 (1991) 2141-2147.
[41] R.M. do Nascimento, A.E. Martinelli and A.J.A. Buschinelli, Review Article: Recent advances in metal-ceramic brazing, Ceramica, Vol. 49, No. 312
(2013) 178-198.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.15.15
論文開放下載的時間是 校外不公開

Your IP address is 18.221.15.15
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code