Responsive image
博碩士論文 etd-0708100-215214 詳細資訊
Title page for etd-0708100-215214
論文名稱
Title
高溫時效處理下,金鋁微接點顯微組織分析
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-19
繳交日期
Date of Submission
2000-07-08
關鍵字
Keywords
金鋁微接點、接合部
wire bonding
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
論文摘要內容:所有的電子零組件和I.C.等必須經由封裝和電路連接才能夠應用,這方面的技術統稱電子構裝。構裝技術種類繁多,I.C.的封裝為第一層次構裝,目的在於保護元件線路,防止碰損,防止濕氣侵入造成腐蝕和短路;而I.C.晶片訊號對外電路連接則經導電架(lead frame)架構而成。 本實驗將針對Au-Al接合部在高溫的時效處理(aging)後,界面反應相隨時間顯微組織改變的行為,藉觀察材料擴散反應,以暸解微接點由好轉壞的整個過程,期望找出試片在高溫條件的影響下,接合失敗的緣由,並藉試驗後高可靠度的試片,得其wire bonding condition,來改善接合技術,使元件在wire bond方面的參數可達到產品可靠度要求之保證。此次研究分析我們藉由電子微探儀(EPMA)對試片進行微接點顯微組織分析及morphology觀察後發現,接合部相反應層形成關聯為:最早出現的是Au5Al2和Au2Al phase,而後Au5Al2 phase逐漸成為化合物層主要的phase,隨著時效處理時間增加,Au4Al phase出現,且Au5Al2 phase厚度越來越小,而Au4Al phase卻越來越厚,此階段也發現反應層間除了初始接合不良所產生的initial voids外,另有minute voids的出現,我們可以整理出:孔洞是出現在Au4Al phase中靠近Au的邊緣,剛開始是出現一些微小而不連續的孔洞,隨時效時間的增加,孔洞漸漸變大且連續分佈,同時,會隨著擴散過程中Au4Al phase成長的移動,孔洞會朝金球方向向上移動。以這些結果為基礎,我們試著去解釋孔洞形成的機構:我們相信Au4Al phase中Au原子向Al-rich層擴散的原子數目大於Al原子相反方向擴散的數目。這樣便引起空孔(vacancies)堆積、合併進而在Au4Al相靠近Au的界面區域形成孔洞。當反應層形成大尺寸且連續的crack後,即代表接合失敗。
Abstract
目次 Table of Contents
目錄
壹、前言 1
1-1 研究背景 1
1-2 文獻回顧 3
貳、實驗方法 7
2-1 試片分類 8
2-2 實驗步驟 10
2-2.1 時效處理 10
2-2.2 試片製作 10
2-2.3 試片分析 10
參、實驗結果 12
3-1 剪斷強度測試 12
3-2 金鋁接合部金相組織觀察 13
3-3 孔洞成長觀察 15
肆、討論 17
4-1 金鋁接合部之相變化 17
4-2 孔洞的類型 17
4-3 介金屬化合物和孔洞形成之間的關聯 19
4-4 封裝材料對可靠度的影響 22
伍、結論 24
陸、參考文獻 26
表目錄
表一、試片分類整理表 30
表二、Sample C 接合部化合物層厚度和時效時間的關係 31
表三、Sample A1接合部化合物層厚度和時效時間的關係 32
表四、Sample A2接合部化合物層厚度和時效時間的關係 33
表五、Sample A3接合部化合物層厚度和時效時間的關係 34
表六、Sample A4接合部化合物層厚度和時效時間的關係 35
表七、Sample B1接合部化合物層厚度和時效時間的關係 36
表八、Sample B2接合部化合物層厚度和時效時間的關係 37
表九、Sample B3接合部化合物層厚度和時效時間的關係 38
表十、Sample B4接合部化合物層厚度和時效時間的關係 39
圖目錄
圖一、Au-Al二元相圖 40
圖二、Au-Al-Ti三元相圖 41
圖三、Sample C時效處理時間與剪斷強度曲線圖 42
圖四、Sample C接合部化合物層厚度與時效時間曲線圖 43
圖五、Sample A1接合部化合物層厚度與時效時間曲線圖 44
圖六、Sample A2接合部化合物層厚度與時效時間曲線圖 45
圖七、Sample A3接合部化合物層厚度與時效時間曲線圖 46
圖八、Sample A4接合部化合物層厚度與時效時間曲線圖 47
圖九、Sample B1接合部化合物層厚度與時效時間曲線圖 48
圖十、Sample B2接合部化合物層厚度與時效時間曲線圖 49
圖十一、Sample B3接合部化合物層厚度與時效時間曲線圖 50
圖十二、Sample B4接合部化合物層厚度與時效時間曲線圖 51
圖十三、接合部邊緣crack及反應相分布情形 52
圖十四、化合物層相變化流程圖 53
圖十五、Sample C之mapping影像 54
圖十六-(1)、出現在接合部各型孔洞示意圖(一) 55
圖十六-(2)、出現在接合部各型孔洞示意圖(二) 56
圖十七、initial voids 之示意圖 57
圖十八、Sample A1經短期時效處理後,接合部之BEI影像 58

圖十九、Sample B4經16hours時效處理後,接合部之BEI
影像 59
圖二十、Sample A1經不同時效處理後的BEI影像 60
圖二十一、接合部邊緣相變化 61
圖二十二、(A)Au wire經etching後翻球之SEI影像;
(B)Al pad經翻球後之SEI影像 62
圖二十三、wire bond過程中,Al pad遭受推擠而堆積在ball外圍之示意圖 63

參考文獻 References
陸、參考文獻
1. T. Uno, K. Tataumi, and Y. Ohno, "Voids Formation and Reliability in Gold-Aluminum Bonding," Proceedings of the Joint ASME/JSME Advances in Electronic Packaging, Vol. 1-2, pp. 771-777, 1992.
2.E. Philofsky, "Intermetallic Formation in Gold-Alluminum System," Solid State Electronics, Vol.13, pp. 1391-1399, 1970.
3. V. Koeninger, H. H. Uchida, and E. Fromm, "Degradation of Gold-Aluminum Ball Bonds by Aging and Contamination," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, vol. 18, No. 4, pp. 835-841, Dec. 1995.
4.George G. Harman, “Wire Bonding in Microelectronic,” second Edition, published by Mc Graw-Hill, 1997.
5.Sung K. Kang, "Gold-to-Aluminum Bonding for TAB Applications," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, pp. 998-1003, Dec. 1992.
6.K. I. Johnson, M. H. Scott and D. A. Edson, "Ultrasonic Wire Welding," Solid State Technology, Part II, Ball-Wedge Wire Welding, pp. 91-95, Apr. 1977.
7.T. J. Rossiter, "Ambient Effects on Gold-Aluminum Bonds," Proceedings, Annual Reliability Physics Symposium, pp. 186-190, 1970.
8.Nakane et al, "Fundamental Study for Microjoining in LSI," J. High Temperature Society, Vol. 13, pp. 248-255, 1987.
9.Suresh Kumar, Frank Wulff and Klaus Dittmer, " Degradation of Small Ball bonds due to Intermetallic Phase (IP) Growth," published by K&S Packaging Materials.
10.Guy V. Clatterbaugh, Joel A. Weiner, and Harry K. Charles, Jr., Senior Member, IEEE, "Gold-Aluminum Intermetallics:Ball bond shear Testing and Thin Film Reaction Couples," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 7, No. 4, pp. 349-356, Dec. 1984.
11. Lisa Maiocco, Donna Smyer, Paul R. Munroe, and Ian Baker, "Correlation Between Electrical Resistance and Microstructure in Gold Wire Bonds on Aluminum Films," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 3, pp. 592-935, Sep. 1990.
12. Cher Ming Tan, Eddie Er, Younan Hua, and Vincent Chai, "Failure Analysis of Bond Pad Metal Peeling Using FIB and AFM," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, vol. 21, No. 4, pp. 585-591, Dec.1998.
13. Jin Onuki, Masateru Suwa, Masahiro Koizumi, and Tomio Iizuka, "Investigation of Aluminum Ball Bonding Mechanism," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 10, pp. 242-246, Jun. 1987.
14. Da-Yuan Shin and Peter J. Ficalora, "The Reliability of Au-Al Intermetallic Formation and Electromigration in Hydrogen Environments," IEEE Transations on Electron Devices, Vol. 26, No. 1, pp. 27-34, Jan. 1979.
15. R. Wayne Johnson, Senior Member, IEEE, Michael J. Palmer, Michael J. Bozack, and Tamara Isaacs-Smith, "Thermosonic Gold Wire Bonding to Laminate Substrate with Palladium Surface Finishes," IEEE Transactions on electronics packaging manufacturing, Vol 22, No. 1, pp. 7-15, Jan. 1999.
16. Salim. Khoury, David J. Burkhard, Member, IEEE, David P. Galloway, and Thomas A. Scharr, Senior Member, IEEE, "A Comparison of Copper and Copper and Gold Wire Bonding on Integrated Circuit Devices," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, pp. 673-681, Dec. 1990.
17. Gautam N. Shah, Lee R. Levine, Associate Member, IEEE, and Dipak I. Patel," Advances in Wire Bonding Technology for High Lead Count, High-Density Devices", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, No. 3, Sep. 1988.
18.F. J. J. van Loo, "Multiphase Difusion in Binary and Ternary Solid
State Systems," Prog. Solid State Chem. Vol. 20, pp. 47-99, 1990.
19.Jin Onuki, Masahiro Koizumi, and Isao Araki, "Investigation of the Reliability of Copper Ball Bonds to Aluminum Electrodes," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 550-555, Dec. 1987.
20. J.F Graves and W. Gurany, "Reliability Effects of Fluorine Contamination of Aluminum Bonding Pads on Semiconductor Chips," Solid State Technology, pp. 227-232, Oct. 1983.
21. J.L. Murray and H. Okamoto and T. B. Massalski, “The Aluminum-Gold System, Phase Diagrams of Binary Gold Alloys,” pp. 13-22.
22. Robert E. Reed-Hill and Reza Abbaschian, “Physical Metallurgy Principles ”,pp.360~379.
23. A. Prince, G. V. Raynor and D. S. Evans,“Phase Diagrams of Ternary Gold Alloys,”published by The Institute of Metals, pp.121-122, 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.103.202
論文開放下載的時間是 校外不公開

Your IP address is 3.147.103.202
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code