Responsive image
博碩士論文 etd-0708102-105424 詳細資訊
Title page for etd-0708102-105424
論文名稱
Title
超巨磁阻材料La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co) 磁傳輸與電性之研究
Study of the magnetotransport behavior and electrical properties in the colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-21
繳交日期
Date of Submission
2002-07-08
關鍵字
Keywords
磁阻率、零場冷卻、長程耦合、短程耦合、鐵磁性、場冷卻、超交換作用、鈣鈦礦、正交體、雙重交換作用、反鐵磁性、磁序、電阻率、超巨磁阻、鐵磁轉換溫度、菱面體、飽和磁矩
field-cooling, zero-field-cooling, long range spin ordering, short range spin ordering, resistivity, ferromagnetic transition temperature, antiferromagnetic, spi nordering, ferromagnetic, superexchange interaction, magnetoresistance ratio, saturation magnetization, perovskite, rhombohedral, orthorhombic, colossal magnetoresistance, double-exchange interaction
統計
Statistics
本論文已被瀏覽 5763 次,被下載 1653
The thesis/dissertation has been browsed 5763 times, has been downloaded 1653 times.
中文摘要
近年來由於被觀察到超巨磁阻的特性,而使的具有鈣鈦礦結構的錳氧化合物 Ln1-xAxMnO3 (Ln=La, Nd, Pr, and A=Ca, Sr, Ba, Pb) 引起相當廣泛的興趣而成為重要的研究主題。基本上,未經摻雜的LaMnO3 具有絕緣和反鐵磁的特性。藉由使用兩價的鹼金屬取代鑭,化合物中的錳形成 Mn 3+ / Mn4+ 的混價狀態,特性轉變為金屬和鐵磁性,同時呈現出超巨磁阻的現象。

本篇論文主要是研究鈣鈦礦結構超巨磁阻材料 La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co) 的磁傳輸與電特性。藉由化合物中鐠、銣和釔摻雜取代鑭位置,鈷和鐵摻雜取代錳位置來研究取代效應所造成的晶格結構、磁傳輸、與電性的影響。研究結果顯示,鑭位置由鐠、銣取代直接造成晶格扭曲,所有材料因摻雜而產生晶格結構的變化。由x光繞射圖形判讀顯示隨著摻雜量的增加樣品可為菱面體結構甚至為正交體結構。晶格扭曲的增加使得Mn3+-O2--Mn4+ 的鍵角變小,錳的自旋方向傾斜,導致雙重交換作用減弱,終至鐵磁性的減弱,鐵磁轉換溫度的變小,eg電子能帶寬減小,電阻率增加,然而卻也因為在外加磁場下高電阻的大量降低而造成磁阻率增加,同時由於鐠、銣等磁性離子的介入使得飽和磁矩增加。比較鑭位置的取代結果,相較於鐠和銣,釔取代鑭的效應並不相同。因為釔為非磁性離子,故溫度倚變的磁矩數值顯示其飽和磁矩隨釔含量的增加而減小。相同取代量時,由零場冷卻和場冷卻磁性量測結果可得知釔取代時磁序較鐠或銣取代時短。且其離子半徑較小,晶格較易扭曲,使得Mn3+-O2--Mn4+ 的鍵角較易變小,而造成鐵磁轉換溫度較小和磁阻率較大。

錳位置的取代造成的晶格扭曲較不明顯,這是因為錳、鈷和鐵的離子半徑差異並不大。所有材料的晶格結構因摻雜而產生結構些微變化,同時由x光繞射圖形判讀顯示樣品可為菱面體結構或正交體結構,溫度倚變的磁矩數值顯示摻雜量的增加將導致扮演鐵磁性雙重交換作用的Mn3+-O2--Mn4+ 含量減少,而反鐵磁性超交換作用的Mn-O-Me (Me=Fe and Co) 的總含量增加,因而鐵磁特性逐漸減弱。同時由零場冷卻和場冷卻磁性量測可得知材料在鐵磁性轉換溫度下原有的長程耦合鐵磁特性漸被短程耦合取代,鈷與鐵離子取代錳離子抑制雙重交換作用,因而導致鐵磁性的衰減和鐵磁轉換溫度的降低。

綜合比較化合物中鐠、銣和釔摻雜取代鑭位置,鈷和鐵摻雜取代錳位置所造成的晶格結構、磁傳輸、與電性的影響其機制並不相同。鐠、銣和釔摻雜取代鑭位置主要是造成晶格扭曲,使得Mn3+-O2--Mn4+ 的鍵角變小而抑制鐵磁性雙重交換作用,導致諸特性的改變。鈷和鐵摻雜取代錳位置則是直接減少鐵磁性雙重交換作用Mn3+-O2--Mn4+ 鍵結出現的機率。本論文的研究在藉由各個元素的摻雜以釐清化合物中各元素所扮演的角色,進一步瞭解此類材料的特性,以期將來在製造薄膜元件時可以充分掌握其物理機制,同時在特性改善上有所依據。



Abstract
The hole-doped perovskite manganese oxide such as Ln1-xAxMnO3 (Ln = La, Nd, Pr, and A = Ca, Sr, Ba, Pb) is one of the most studied topics in the recent years due to the observation of colossal magnetoresistance (CMR). Basically, LaMnO3 has an almost insulating behavior and on antiferromagnetic arrangement. By substituting a divalent cation (A2+) in place of La3+, LaMnO3 can be driven into metallic and ferromagnetic state. Mixed valence of Mn 3+ / Mn4+ is needed for both metallic
behavior and ferromagnetism in these materials. The CMR characteristic occurs in the ferromagnetic state.

A systematic investigation of the structural, magnetic and electrical properties in the perovskite colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co) has presented in this thesis. By subatituting Nd, Pr, Y for the La and Co, Fe for the Mn, the substitution effects on the crystallographic deformation, magnetotransport behavior and electrical properties in these compounds have been studied.

According to the results of this research, crystallographic distortion is induced by the
substitution of smaller ions, Pr or Nd, onto the La-site. Powder $x$-ray diffraction patterns show a crystallographic transition from rhombohedral symmetry (R-3c) to orthorhombic (Pbnm) crystal structure as the doping content is increased. The increase of deformation from R-3c to Pbnm decreases the bond angle of Mn3+-O2--Mn4+ , increases the cant of Mn spin, weakens the double-exchange interaction and results in decrease of ferromagnetism, low ferromagnetic transition temperature Tc, eg electron bandwidth and conductivity. However, the great quantity of decrease in resistivity by an external field leads to the increase in the magnetoresistance ratio. We also find that the increase of saturation magnetization results from the contribution of magnetic ion of Pr or Nd. In addition. in contrast to substitution La by magnetic ion of Pr and Nd, the saturation magnetization is decreased as Y content is increased. The zero-field-cool (ZFC) and field-cool (FC) magnetic measurements indicate that the range of spin ordering for Y one is shorter than Pr one or Nd one
with the same doping content. It is because of the small ionic radius of Y, which results in larger distortion, increases the bond angle of Mn3+-O2--Mn4+, and
corresponds low ferromagnetic transition temperature.

The distortion induced by Mn-site substitution is not obvious due to the similar radius of Mn, Co and Fe. Powder x-ray diffraction patterns show a single phase of rhombohedral symmetry (R-3c) for Co doped ststem and a slight crystallographic transition from rhombohedral (R-3c) to orthorhombic (Pbnm) symmetry for Fe doped system. Values of temperature dependence of magnetization indicate that the ferromagnetic double-exchange interaction is gradually substituted by the
superexchange interaction. The ZFC-FC curves also indicate that long-range spin ordering is progressively substituted by the short-range spin ordering. The substitution of Mn by Co and Fe supresses the double-exchange interaction, decreases the ferromagnetism and the ferromagnetic transition temperature.

Due to the synthesis of the substitution of Nd, Pr, Y for La and Co, Fe for Mn, the mechanism of substitution effects are proved different. The substitution of Nd, Pr and Y for La distorts the crystal, decreases the Mn3+-O2--Mn4+ bond angle, and results in the transition of properties, while the substitution of Co and Fe for Mn decrease the percentage of ferromagnetic Mn3+-O2--Mn4+. The purpose of this thesis is to clear up the role functions of all elements in these compounds and properties of these compounds. Based on the knowledge of these compounds, it would be helpful to control the physical mechanism and improve the characteristics on preparing their thin film devices.

目次 Table of Contents
CONTENTS
中文摘要
ABSTRACT
致謝
CONTENTS
LIST OF FIGURES
LIST OF TABLES
1.INTRODUCTION
2.THEORY
3.EXPERIMENTAL
3.1 Specimens preparation
3.2 Magnetic properties measurements
3.3 Electrical properties measurement
4 RESULTS AND DISSUSSION
4.1 Magnetic and electrical properties of archetype La0.7Pb0.3MnO3
4.2 Substitution e_ect of La-site in La0.7Pb0.3MnO3 system
4.2.1 Characteristic of (La0:7_xNdx)Pb0:3MnO3 system
4.2.2 Characteristic of (La0:7_xPrx)Pb0:3MnO3 system
4.2.3 Characteristic of (La0:7_xYx)Pb0:3MnO3 system
4.2.4 Synthesis of La-site substitutions for x=0.1
4.2.5 Synthesis of La-site substitutions for x=0.7
4.3 Substitution e_ect of Mn-site in La0:7Pb0:3MnO3 system
4.3.1 Characteristic of La0:7Pb0:3(Mn1_xCox)O3 system
4.3.2 Characteristic of La0:7Pb0:3(Mn1_xFex)O3 system
4.3.3 Synthesis of Mn-site substitutions
CONCLUSIONS
REFERENCES


參考文獻 References
REFERENCES
[1] Stephen Blundell, "Magnetism in Condensed Matter", Series: Oxford Master
Series in Condensed Matter Physics 4, Department of Physics, University of
Oxford Press.
[2] Baibich et al:, Phys. Rev. Lett., 61, 2472 (1988).
[3] S. Jin, T. H. Tiefel, M. Me Cormak, R. A. Fastnacht, R. Ramesh and L. H.
Chen, Science 264, 413 (1994).
[4] G. H. Jonker and J. H. Van Santen, "Ferromagnetic compounds of manganese
with perovskite structure", Physica 16, pp. 337-349 (1950).
[5] J. H. Van Santen and G. H. Jonker ,"Electrical conductivity of ferromagnetic
compounds of manganese with perovskite structure", Physica 16, pp. 599-
600 (1950).
[6] J. H. Van Santen,"Magnetic compounds with perovskite structure III. ferromagnetic
compounds of cobalt", Physica 19, pp. 120-130, 1953.
[7] J. Volger ,"Future experimental investigation of some ferromagnetic oxidic
compounds of manganese with perovskite structure", Physica 20, pp. 49-66
(1954).
[8] I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76, 4825 (1996).
[9] W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
[10] G. H. Jonker and J. H. van Santen, Physica (Amsterdam), 16, 337 (1950).
[11] Y.-S. Su, T. A. Kaplan and S. D. Mahanti, Phys. Rev. B, 61, 1324 (2000).
[12] C. Zener, Phys. Rev. 82, 440 (1951).
[13] C. Zener, Phys. Rev. 82, 440 (1951).
[14] J. Volger, Physica 20, 49 (1954).
[15] K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M.
Gapshup, R. S. Bathe and S. I. Patil, Phys. Rev. B 59, 533 (1999).
[16] X. Bohigas, E. D. Barco, J. Tejada, X. X. Zhang and M. Sales, Appl. Phys.
Lett. 73,, 390 (1998).
[17] W. Bao, J. D. Axe, C. H. Chen, S. W. Cheng, Phys. Rev. Lett. 78,, 543
(1997).
[18] J. Blasco, J. Carcia, J. M. de Teresa, M. R. Ibarra, J. Perez, P. A. Algarabel
and C. Marquina, Phys. Rev. B 55,, 8905 (1997).
[19] I. O.Troyanchuk, D. D. Khalyavin, E. F. Shapovalova, N. V. Kasper and S.
A. Guretskii, Phys. Rev. B 58, 2422 (1998).
[20] S. L. Young, Y. C. Chen, L. Horng, T. C. Wu, Z. C. Chen and J. B. Shi, J.
Mag. Mag. Matter. 209, 145 (2000).
[21] J. Guti_errez, A. Pe~na, J. M. Barandiar_an, Pizarro, L. Lezama, M. Insausti
and A. Rojo, J. Phys.: Cond. Matter 12, 10523 (2000).
[22] W. Heisenberg, Z. Physik, 49, 619 (1928).
[23] P. G. de Gennes, Phys. Rev. 118, 141 (1960).
[24] J. B. Goodenough, A. Wold, R. J. Arnott and N. Menyuk, Phys. Rev. 124,
373 (1961).
[25] J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).
[26] H. Y. Hwang, S.-W. Cheong, N. P. Ong and B. Batloog, Phys. Rev. Lett.
77, 2041 (1996).
[27] C. Zener, Phys. Rev. 81 403 (1951).
[28] P. Schi_er, A. P. Ramirez, W. Bao and S. W. Cheong, Phys. Rev. Lett. 76,
3336 (1995).
[29] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
[30] X. Y. Li, A. Gupta, Gangxiao and G. Q. Gong, Appl. Phys. Lett. 71, 1124
(1997).
[31] J. Millis, P. B. Littlewood and B. I. Shraiman, Phys. Rev. Lett. 74, 5144
(1995).
[32] L. Sheng, D. Y. Xing, D. N. Seng and C. S. Ting, Phys. Rev. Lett. 79, 1710
(1995).
[33] H. Roder, J. Zang and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
[34] J. P. Zhou et al:, Appl. Phys. Lett. 75, 1146 (1999).
[35] Y. Tomioka et al:, Physica B 246, 135 (1995).
[36] J. L. Garc_ia-Mu~noz et al:, , Phys. Rev. B 55, R668 (1997).
[37] H. Y. Hwagn et al:, Phys. Rev.Lett. 75, 914 (1995).
[38] V. Caignaert et al:, Solid Stste Communication 95, 357 (1995).
[39] J. Blasco et al:, J. Phys.: Cond. Matter 8, 7427 (1996).
[40] S. L. Young, H. Z. Chen, C. H. Lin, L. Horng, J. B. Shi and Y. C. Chen, J.
Mag. Mag. Matter. 239, 70 (2002).
[41] C. N. R. Rao et al:, J. Phys. Chem. Solids 59, 487 (1998).
[42] A. Asamitsu et al:, NATURE 373, 407 (1995).
[43] J. Fontcuberta et al:, J. Appl. Phys. 81, 5481 (1997).
[44] H. L. Ju et al:, J. Mag. Mag. Matter. 167, 200 (1997).
[45] G. Matsumoto et al:, J. Phy. Soc. Jpn. 29, 615 (1970).
[46] A. N. Ulyanov et al:, J. Appl. Phys. 91, 8900 (2002).
[47] J. P. Zhou et al:, Appl. Phys. Lett. 75, 1146 (1999).
[48] V. Goldschmidt, Geochemistry, Oxford University Press (1958).
[49] R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sec. A 32, 751 (1976).
[50] J. M. D. Coey et al:, Advanced in Phys. 48, 167 (1999).
[51] R. Mahesh et al:, J. Solid State Chem. 120, 204 (1995).
[52] J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).
[53] R. Mahendiran et al:, Phys. Rev.Lett. 75, 914 (1995).
[54] Y. Tomioka et al:, Appl. Phys. B 53, 3348 (1996).
[55] Lide M. Rodriguez-Martinez, Helmut Ehrenberg and J. Paul Att_eld, Solid
State Sci. 2, 11 (2000).
[56] A. N. Ulyanova et al:, J. Appl. Phys. 91, 8900 (2002).
[57] J. Guti_errez, J. M. Barandiar_an, M. Insausti, L. Lezama, Pe~na A, Blanco J
J and Rojo T, J. Appl. Phys. 83, 7171 (1998).
[58] S. L. Young, Y. C. Chen, L. Horng, T. C. Wu, J. C. Chang, H. Z. Chen, J.
B. Shi, J. Mag. Mag. Matter. 239, 11 (2002).
[59] S. L. Young, H. Z. Chen, L. Horng, J. B. Shi and Y. C. Chen, Jpn. J. Appl.
Phys. 40, 4878 (2001).
[60] R. Valenzuela, "Magnetic cermics", London : Cambridge University Press
(1994).
[61] R. A. Young, Oxford University Press, "The Rietivld Method" (1995).; R.
A. Young, Allen C. Larson and C. O. Paiva-Santos, "Use's guide to program
DBWS-9807a for Rietveld anylasis of x-ray and neutron powder di_raction
patterns with PC", School of Physics, Georgia Institute of Technology, Atlanta,
GA 30332 (1999).
[62] Mike McElfresh, Purdue University, "Handbook of Featuring quantum design's
magnetic property measurement system MPMSR2-5S"
[63] "Low level measurements: Precision DC current, voltage, and resistance
measurements", Chapter 4, Keithley.
[64] H. Y. Hwagn et al:, Phys. Rev. Lett. 77, 2041 (1996).
[65] A. Gupta et al:, Phys. Rev. B 54, R15629 (1996).
[66] X. L. Wang et al:, Appl. Phys. Lett. 73, 369 (1998).
[67] X. W. Li et al:, Appl. Phys. Lett. 71, 1124 (1997).
[68] Yonglai Fu, Appl. Phys. Lett. 77, 118 (2000).
[69] J. M. De Teresa et al:, Phys. Rev. B 58, R5928 (1998).
[70] Antoine Maignan et al:, J. Appl. Phys. 79, 7891 (1996).
[71] Lide M. Rodriguez-Martinez, Helmut Ehrenberg and J. Paul Att_eld, Solid
State Sci. 2, 11 (2000).
[72] R. M. Thomas, L. Ranno and J. M. D. Coey, , J. Appl. Phys. 81, 5763
(1997).
[73] P. Schi_er et al:, Phys. Rev. Lett. 75, 3336 (1995).
[74] K. Kubo et al:, J. Phys. Soc. Jpn. 33, 21 (1972).
[75] N. F. Mott, Conduction in Non-Crystalline Materials (5.3.5), Clarendon
Press (1987).
[76] C. M. Varma, Phys. Rev. B 54, 7328 (1996).
[77] H. Y. Hwagn et al:, Phys. Rev. Lett. 75, 914 (1995).
[78] V. Caignaert et al:, Solid State Commun. 95, 357 (1995).
[79] J. Blasco et al:, J. Phys. Condens. Matter 8, 7427 (1996).
[80] J. B. Shi, F. C. Wu, C. T. Lin, Appl. Phys. A 68, 1-5 (1999)
[81] K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M.
Gapshup, R. S. Bathe, S. I. Patil, Phys. Rev. B 59, 533 (1999).
[82] J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).
[83] K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M.
Gapshup, R. S. Bathe, S. I. Patil, Phys. Rev. B 59, 533 (1999).
[84] J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).
[85] C. N. R. Rao, R. Mahesh, A. K. Raychaudhuri, and R. M. ahendiran, J.
Phys. Chem. Solids, 59, 487 (1998).
[86] C. Zener, Phys. Rev. 82, 403 (1951).
[87] P. Schi_er, A. P. Ramirez, W. Bao, and S. W. Cheong, Phys. Rev. Lett. 75,
3336 (1995).
[88] L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 79,
1710 (1997).
[89] P. S. Anil Kumar, P. A. Joy and S. K. Date, J. Phys.: Condens. Matter 10,
L269 (1998).
[90] H. Y. Wang, S. -W Choeng, R. G. Radaelli, M. Marezio and B. Batlogg,
Phys. Rev. Lett. 75, 914 (1995).
[91] J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).
[92] J. M. De Teresa, M. R. Ibarra, J. Garcia, J. Blasco, C. Ritter, P. A. Algarable,
C. Marquina, and A. del Moral, Phys. Rev. Lett. 76, 1727 (1996).
[93] J. Gutierrez, J. M. Barandiaran, M. Insausti, L. Lezama, A. Pena, J. J.
Blanco, and T. Rojo: J. Appl. Phys. 83 7171 (1998).
[94] T. J. Jackson, S. B. Palmer, H. J. Blythe, and A. S. Halim: J. Magn. Magn.
Mater. 159 269 (1996).
[95] R. D. Shannon,and C. T. Prewitt: Acta Crystallogr. Sec. B 25, 725 (1969).
[96] E. A. Turov, 1961, in: Ferromagnitnyi Rezonans, ed. S. V. Vonsovsky
(GIFML,Moscow) chs. 3.
[97] J. A Fernandez-Baca, P Dai, H. Y. Hwang, C. Kloc, and S-W. Cheong: Phys.
Rev. Lett. 80 4012 (1998).
[98] A. S. Borovik-Romanov, S. K. Sinha, Spin Wave and Magnetic Excitations,
Elsevier Science Publishers B. V., 1988.
[99] J. Vergara, R. J. Ortega-Hertogs, V. Madurga, F. Sapi~na, Z. El-Fadli, E.
Mart_inez, A. Beltr_an and K. V. Rao, Phys. B 60, 1127 (1999).
[100] B. X. Gu, S. Y. Zhang, H. C. Zhang, and B. G. Shen: J. Magn. Magn. Mater.
204, 45 (1999).
[101] A. Simopoulos et al:, Phys. Rev. B 59, 1263 (1999).
[102] D. N. H. Nam et al:, Phys. Rev. B 59, 4189 (1999).
[103] S. M. Yusuf et al:, Phys. Rev. B 62, 1118 (2000).
[104] R. Mahendiran and A. K. Raychaudhuri, Phys. Rev. B 54, 11044 (1996).
[105] V. G. Bhide et al:, Phys. Rev. B 12, 2832 (1975).
[106] M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid State Chem. 118,
323 (1995).
[107] A. Chainani, M. Mathew and D. D. Sarma, Phys. Rev. B 46, 9976 (1992).
[108] J. P. Zhou et al:, J. Appl. Phys. 75, 1146 (1999).
[109] R. Mahendiran and A. K. Raychaudhuri, Phys. Rev. B 54, 11044 (1996).
[110] L. Righi et al:, J. Appl. Phys. 81, 5767 (1997).
[111] S. M. Yusuf et al:, Phys. Rev. B 62, 1118 (2000).
[112] A. Maignan et al:, Mater. Res. Bull. 32, 965 (1997).
[113] H. Y. Hwagn et al:, Phys. Rev. Lett. 75, 914 (1995).
[114] V. Caignaert et al:, Solid State Commun. 95, 357 (1995).
[115] J. Blasco et al:, J. Phys. Condens. Matter 8, 7427 (1996).
[116] J. B. Shi, F. C. Wu, C. T. Lin, Appl. Phys. A 68, 1-5 (1999)
[117] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys.
Rev. Lett. 71, 2331 (1993).
[118] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H.
Chen, Science 264, 413 (1994).
[119] S. Jin, H. M. O'Bryan, T. H. Tiefel, M. McCormack, and W. W. Phodes,
Appl. Phys. Lett. 66, 382 (1995).
[120] Y. Tomioka, A. Ssamitsu, Y. Moritomo, H. Kuwahara, and Y. Tokura, Phys.
Rev. Lett. 74, 5108 (1995).
[121] P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schi_er, and A.
P. Ramirez. Phys. Rev. Lett. 75, 4488 (1995).
[122] R. von Helmolt, J. Wecker, K. Samwer, L. Haupt, and K. Barner, Appl.
Phys. Lett. 76, 6925 (1994)
[123] J. Millis, P. B Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144
(1995)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code