Responsive image
博碩士論文 etd-0708102-145645 詳細資訊
Title page for etd-0708102-145645
論文名稱
Title
封裝寄生效應對表面聲波元件效能的影響研究
Investigation of Package Parasitic on the Performance of SAW Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-12
繳交日期
Date of Submission
2002-07-08
關鍵字
Keywords
表面聲波元件、有限時域差分法、封裝
surface acoustic wave device, package, Finite difference time domain, HFSS
統計
Statistics
本論文已被瀏覽 5684 次,被下載 9959
The thesis/dissertation has been browsed 5684 times, has been downloaded 9959 times.
中文摘要
近幾年來,表面聲波濾波器(SAW filter)因為具有體積小,可靠度高,不易整合進IC製程中,所以成為時下最熱門的通訊被動元件之一。但隨著操作頻率越來越高,表面聲波濾波器對封裝所產生的電磁干擾效應也越來越敏感,最終導致封裝後的特性與未考慮封裝效應的設計值有很大的出入。

本論文中,我們研究時域有限差分(FDTD, Finite Difference Time Domain)演算法與HFSS (High Frequency Structure Simulator)結合ADS軟體的操作流程,以全波方式模擬SAW Filter在封裝盒中的電磁干擾情形,藉此建立電磁波結合聲波的模擬步驟,並與量測結果做比較。初步結果顯示我們所提供的方法,能有效地預測封裝後的頻率響應。藉由初期的預測,可以達到節省SAW Filter的設計時間與成本。
Abstract
Because SAW filters are small, high reliability, and it cannot be easily integrated with silicon substrate, they have become one of the most popular communication passive components recently. As the working frequency becomes higher, SAW filters are more sensitive to electromagnetic interference introduced by the package. Discrepancy in performance between design and measurement can be large if the packing effects are not considered.

In this thesis, we make use of Finite Difference Time Domain method (FDTD) and develop a procedure combining High Frequency Structure Simulator (HFSS) with ADS software to simulate electromagnetic effect of a packaged SAW Filter. This is a full-wave method that integrates electromagnetic wave and acoustic wave. Measurement is also carried out to verify the simulated results. Preliminary results show that this method that we provide can predict frequency response in package effectively. Our Prediction can save factory design time and production cost.
目次 Table of Contents
誌 謝 i
中文摘要 iii
英文摘要 iv
目 錄 v
圖表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究的困難與限制 2
第二章 SAW的工作原理與簡介 3
2.1 簡介 3
2.2 SAW Filter的工作原理 5
2.3 SAW 元件的製作過程 8
第三章 全波模擬方法的簡介 11
3.1 Finite Difference Time Domain (FDTD)基本原理 11
3.1.1 YEE的FDTD演算法 12
3.1.2穩定準則 16
3.1.3吸收邊界條件 17
3.1.3.1 Mur吸收邊界 18
3.1.3.2 PML 19
3.1.4 FDTD模擬集總電路元件 31
3.1.5 FDTD激發源的處理 33
3.1.5.1取代源 34
3.1.5.2附加源 35
3.1.5.3阻抗性電壓源 36
3.1.6等效電流源的處理 37
3.1.7 FDTD演算流程 42
3.2 HFSS簡介與使用流程介紹 43
3.2.1 HFSS使用流程介紹 44
第四章 串音(Crosstalk)與屏蔽理論介紹 46
4.1 串音(Crosstalk)的介紹 46
4.2 電感耦合 49
4.3 電容耦合 51
4.4 互感與互容的合成效應 52
第五章 模擬結果與討論 57
5.1 前言 57
5.2 串音(Crosstalk)的探討 58
5.3 寄生效應與全體響應的探討 78
5.3.1 quasi-static的介紹與模擬結果 79
5.3.2混合法的介紹與模擬結果 83
5.3.3 FDTD結合集種電路模型的方法研究 95
5.3.4 FDTD結合等效電流源法的方法研究 97
5.3.5 使用HFSS中集種元件模型的方法研究 99
第六章 結論與未來研究方向 101
參考文獻 102
參考文獻 References
[1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.
[2] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.
[3] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol. EMC-23, pp. 377-382, Nov. 1981.
[4] Z. Bi, K. Wu, C. Wu, and J. Litva, “ A dispersive boundary condition for microstrip component analysis using the FD-TD method,” IEEE Trans. Antennas and Propagat., vol. MTT-40, no. 4, pp. 774-777, Apr. 1992.
[5] O. M. Ramahi, “Complementary operators: A method to annihilate artificial reflections arising from the truncation of the computational domain in the solution of patial differential equations,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 697-704, Jul. 1995.
[6] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-200, 1994.
[7] Z.S. Sacks, D.M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 1460 –1463, Dec. 1995.
[8] M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. On Microwave Theory and Techniques, vol.42, no. 8,pp. 1514-1523, August 1994.
[9] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, “Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuit” IEEE Trans. MTT., vol. 38, pp. 849-857, 1990.
[10] A. P. Zhao, “Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1535-1539, July 1996.
[11] Thomas, V. A., M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as sub-grid models for FDTD analysis,” IEEE Microwave and Guided Wave Lett.,Vol.4,1994,pp.141-143.
[12] Kuo, C.-N., V. A. Thomas, S. T. Chew, B. Houshmand, and T. Itoh, “Small-signal analysis of active circuits using FDTD algorithm,” IEEE Microwave and Guided Wave Lett.,Vol.5,1995,pp.216-218.
[13] Kuo, C.-N.,R.-B. Wu, B. Houshmand, and T. Itoh, “Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach,” IEEE Microwave and Guided Wave Lett.,Vol.6,1996,pp.199-201.
[14] Chen, M., S. T. Chew, Kuo C.-N., and T. Itoh, “The extended FDTD method incorporating equivalent-source technique for full-wave analysis of linear and nonlinear microwave circuits,” in 1997 IEEE MTT-S Int. Microwave Symp. Dig., June 1997,pp.67-70.
[15] Kuo, C.-N., B. Houshmand, and T. Itoh, “Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach,” IEEE Trans. Microwave Theory and Techniques,Vol.45,1997,pp.819-826.
[16] S. H. Hall, G. W. Hall, J. A. Mccall, “High-Speed Digital System Design,”全華科技圖書, 2000.
[17] C. R. Paul, “Introduction to Electromagnetic Compatibility,”Wiley Inter Science, 1992.
[18] 廖財昌, “雜訊干擾及防止對策,” 全華科技圖書, 1995.
[19] P. C. Cherry, M. F. Iskander, “High-Frequency Electronic Package And Interconnection Effects,” IEEE Antennas and Propagation Society International Symposium, vol.3, pp.1706-1709, 1994.
[20] X. Yang, C. Finch, T. Wu, “Investigation of Electronic Packaging on the Performance of SAW Device,” Electromagnetic Compatibility, 2001. EMC. 2001 International Symposium on, vol.2,pp.1236-1241,2001.
[21] G. Fischerauer, D. Gogl, R. Weigel, P. Russer, “Investigation of Parasitic Effects in Multi-Transducer SAW RF Filters,” IEEE Ultrasonics Symposium,1994.
[22] D. D. Jatkar, B. Beker, “Effects of Parasitics on the Performance of SAW Filters,” IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol.43, no.6, November 1996.
[23] P. Selmeier, R. Grunwald, A. Przadka, H. Kruger, G. Feiertag, C. Ruppel, “Recent Advances Saw Packaging,” IEEE Ultrasonics Symposium,vol.1, pp.283-292,2001.
[24] T. Makkonen, V. P. Plessky, S. Kondratiev, M. M. Salomaa, “Electromagnetic Modeling of Package Parasitics in SAW-Duplexer,” IEEE Ultrasonics Symposium, 1996.
[25] T. Makkonen, S. Kondratiev, V. P. Plessky, T. Thorvaldsson, J. Koskela, J. V. Knuuttila, and M. M. Salomaa, “Surface Acoustic Wave Impedance Element ISM Duplexer:Modeling and Optical Analysis,” IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol.48, no.3, May 2001.
[26] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” 全華科技圖書,1998.
[27] I. Doerr, L. T. Hwang, G. Sommer, H. Oppermann, L. Li, M. Petras, S. Korf, F. Sahli, T. Myers, M. Millers, and W. John, “Parameterized Models for a RF Chip-To-Substrate Interconnect,” IEEE Electronic Components and Technology Conference, 2001.
[28] F. Alimenti, P. Mezzanotte, L. Roselli, R. Sorrentino,“Modeling and Characterization of Bonding-Wire Interconnection,” IEEE Transactions on Microwave Theory and Techniques, vol.49, no. 1, January 20001.
[29] C. Finch, X. Yang, T. Wu, and B. Abbott, “Full-Wave Analysis of RF SAW Filter Packaging,” IEEE Ultrasonics Symposium, vol.1, pp.81-84, 2001.
[30] S. Mineyoshi, O. Kawachi, M. Ueda and Y. Fujiwara, “Analysis and optimal SAW ladder filter design including bounding wire and package impedance,” IEEE Ultrasonics Symposium, 1997..
[31] M. Kamon, M. J. Tsuk, and J. K. White, “Fasthenry A multipole-accelerated 3-D inductance extraction program,” IEEE Trans. Microwave Theory Tech., vol.42, no.9, pp.1750-1758,1994.
[32] K. Nabors and J. White, “Multipole-accelerated capacitance extraction algorithms for 3-D structure with multiple dielectrics,” IEEE Trans. Circuits Syst.-I,vol.39, no.11,pp.946-954,1992.
[33] -----, “Fastcap: A multipole accelerated 3-D capacitance extraction program,” IEEE Trans. Computer-Aided Design, vol.10, no.11,pp.1447-1459,1991.
[34] X. Ye, J. L. Drewniak, “Incorporating Two-port Networks with S-Parameters into FDTD,” IEEE Microwave and Wireless Components Letters, vol.11, no.2, pp.77-79, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code