Responsive image
博碩士論文 etd-0708102-211925 詳細資訊
Title page for etd-0708102-211925
論文名稱
Title
提高第三代或第四代無線通訊系統或無線區域網路傳輸速率及效率的方法
The Methods to Enhance 3G/ Beyond 3G/ Wireless LAN Transmission Rate and Efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-21
繳交日期
Date of Submission
2002-07-08
關鍵字
Keywords
頻譜效率、虛擬星座圖映像、空間分隔多工、增加資料傳輸速率、時空編碼
Space Division Multiplexing, Transmission Data Rate Enhancement, Virtual Constellation Mapping, Space-Time Coding, Spectra Efficiency
統計
Statistics
本論文已被瀏覽 5718 次,被下載 3917
The thesis/dissertation has been browsed 5718 times, has been downloaded 3917 times.
中文摘要
第三代無線通訊系統有兩個主要的目標分別是增加整體系統的容量以及個別的使用者有更高的資料傳輸速率。這些服務將比傳統的系統需要更大的通訊頻寬以及更高效能的數位訊號處理技術。在本論文中,提出一個新的設計可以增加資料傳輸速率以及頻譜效率,這個設計稱為虛擬星座圖映像結合渦輪編碼器。虛擬星座圖映像有簡單的構造同時能利用來提高編碼效率,因此不要求特別高效能的數位訊號處理技術,也就是可以很容易快速的應用在實際系統上。
為了檢驗新方法的優點,我們應用虛擬星座圖映像在3GPP FDD WCDMA 系統以及以OFDM為調變基礎的無線區域網路系統。首先,將建議的設計和傳統的3GPP標準設計比較,資料傳輸速率從384 kbps 提升到450.4 kbps,增加幅度達17%。要特別強調的是,新的設計方法不更改3GPP系統內其他的元件,例如控制信號所需的位元數、QPSK調變器的傳輸速率以及WCDMA 的調變方式。也就是和原始設計使用相同的傳輸頻寬、傳輸功率以及調變方式。這種虛擬星座圖映像設計形式可以應用在multi-Carrier或以OFDM為調變基礎的無線區域網路系統。電腦模擬的結果顯示在相同的資料傳輸速率下以及相同的OFDM調變技術下,虛擬星座圖映像的設計比用時空編碼(窗格形式)在高速移動的環境有更好的效能。另外本論文建議的設計應用在這些系統:3GPP、OFDM(應用時空編碼)時,仍然保有這些系統簡單解碼程序的優點。
Abstract
To achieve two main objectives, viz., to increase the system capacity and having higher data rates, of 3G system for individual users, it comes up to be the unprecedented demand on both communication bandwidth and powerful DSP processing techniques. In this thesis, a new space-time encoding scheme, referred to as the Virtual Constellation Mapping (VCM) scheme associated with the turbo encoder, is devised to enhance transmission data rate and spectral efficiency. It also alleviates the requirement of powerful signal processing technique. In fact, the proposed scheme is very simple and could be used to achieve full utilizing encoding efficiency. It means that the new scheme is easy in practical implementation. To verify the advantages of this new scheme, we apply it to both the 3GPP FDD of WCDMA system and OFDM based Wireless LAN system. First, by comparing the proposed scheme with the conventional standards 3GPP scheme, the information data rate is increased from 384 kbps information data rate to 450.4 kbps, that is 17 % improvement. It should be noted by using the new approach, other system components of 3GPP, e.g., modulation scheme, control bits and the data rate of the QPSK modulators outputs, are all the same. Moreover, this VCM scheme can be applied to the multicarrier modulation or the Wireless LAN with the OFDM modulation. Computer simulation results showed that with the same transmission data rate, our scheme is more robustness compare with the conventional space-time trellis coded OFDM scheme, in high Doppler fading channel. In addition, the proposed scheme required less decoding complexity as the standards, when it is implemented in the 3GPP system and the OFDM system with space-time trellis coding scheme.
目次 Table of Contents
Contents
Acknowledgement i
Abstract ii
Contents iii
List of Figures and Tables v
Chapter 1 Introduction 1
Chapter 2 Conventional Technologies for Data Rate and Transmission Efficiency Improvement
2.1 Introduction 4
2.2 Models Description for Standard WCDMA and OFDM Systems 5
2.2.1 3GPP WCDMA System 5
2.2.2 OFDM Based Wireless LAN System 11
2.3 Models Description for Laboratory Systems 15
2.3.1 The Channel Capacities when Using Multiple Antennas 15
2.3.2 Bell Labs Layered Space-Time System 16
2.3.3 Space-Time Trellis Coded System 19
2.4 Summary 22
Chapter 3 Spatial Diversity with Virtual Constellation Mapping
for 3GPP WCDMA System and Wireless LAN
3.1 Introduction 24
3.2 Virtual Constellation Mapping of QPSK Modulation 25
3.2.1 QPSK Communication System with Single Transmit and Receive
Antenna 25
3.2.2 QPSK Communication System with Multiple Transmit Antennas
and Single Receive Antenna 27
3.2.3 Virtual Constellation Mapping (VCM) Design 31
3.3 Computer Simulations 39
3.3.1 3GPP of WCDMA System 39
3.3.2 OFDM Based Wireless LAN System 49
Chapter 4 Conclusions 56
References 58
參考文獻 References
References

[1] M. Zeng, A. Annamalai, and V. K. Bhargava, ”Harmonization of global third generation mobile systems,” IEEE Communications Magazine, vol. 38, pp. 94-104, December 2000.
[2] J. H. Dholakia and V. K. Jain, “Technologies for 3G wireless communications,” in Proc. IEEE International Conference on Information Technology Coding and Computing, pp. 162-166, April 2001.
[3] I. R. Corden, “3G evolution: real drivers and real solutions,” Second International Conference on 3G Mobile Communication Technologies, pp. 355-357, March 2001.
[4] R. Steele, ”Beyond 3G,” in Proc. International Zurich Seminar on Broadband Communications, pp.1-7, February 2000.
[5] J. Chuang and N. SollZenberger, ”Beyond 3G:wideband wireless data access based on OFDM and dynamic packet assignment,“ IEEE Communications Magazine, vol. 38, pp. 78-87, July 2000.
[6] Y. Raivio, ”4G-hype or reality mobile communications,” Second International Conference on 3G Mobile Communication Technologies, pp. 346-350, March 2001.
[7] J. G. Proakis, Digital communication, 4th Ed., New York: McGraw-Hill, 2001.
[8] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation and Noise, 4th Ed. New York: John Wiley & Sons, 1995.
[9] T. S. Rappaport, Wireless Communications: Principles and Practice, New Jersey: Prentice Hall, 1996.
[10] IEEE, “Supplement to Standard for Telecommunications and Information Exchange Between Systems-LAN/MAN Specific Requirements-Part 11: Wireless MAC and PHY Specifications: High Speed Physical Layer in the 5-GHz Band,”P802.11a/D7.0, July 1999.
[11] R. V. Nee and R. Prasad, OFDM Wireless Multimedia Communications. Boston: Artech House, 2000.
[12] G. J. Foschini, Jr. and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communication, vol. 6, pp. 311-335, March 1998.
[13] A. G. Burr, ”Space-time coding in the third generation and beyond,” IEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond, pp. 7/1 -7/8, February 2000.
[14] S. Baro, G. Bauch, A. Pavlic, and A. Semmler, ”Improving BLAST performance using space-time block codes and turbo decoding,” in Proc. IEEE Global Telecommunications Conference, vol. 2 , pp. 1067-1071, November 2000.
[15] G. J. Foschini, G. D. Golden, R. A. Valenzuela and P. W. Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1841-1852, November 1999.
[16] A. Boukalov, R. Aifeng, and S. J. Halme, ”New cellular wireless system concept for very high bit rate data transmission with smart antennas at the mobile and base station,” IEEE Radio and Wireless Conference, pp. 17-23, September 2000.
[17] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, ”V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” International Symposium on Signals, Systems, and Electronics, pp. 295-300, September 1998.
[18] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,“ IEEE Transactions on Information Theory, vol. 44, pp. 744-765, March 1998.
[19] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing data rate over wireless channels,” IEEE Signal Processing Magazine, vol. 17, pp. 76-92, May 2000.
[20] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Transactions on Communications, vol. 44, pp.1261-1271, October 1996.
[21] A. Stefanov and T. M. Duman, “Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model, decoding approaches, and practical considerations,” IEEE Journal on Selected Areas in Communications, vol. 19, pp. 958-968, May 2001.
[22] K. H. Sayhood, G. L. Zhao, and L. N. Wu, ”Performance analysis of punctured convolutional codes and turbo-codes,” Electronics and Communication Engineering Journal, vol. 13, pp. 166-172, August 2001.
[23] J. Qi, “Turbo code in IS-2000 code division multiple access communications under fading,” Master's Thesis, Wichita State University, Department of Electrical and Computer Engineering, May 1999.
[24] Y. Liu, M. P. Fitz and O. Y. Takeshita, “Full rate space-time turbo codes,” IEEE Journal on Selected Areas in Communications, vol. 19, pp. 969-980, May 2001.
[25] D. Tujkovic, “High bandwidth efficiency space-time turbo coded modulation,” IEEE International Conference on Communications, vol. 4, pp. 1104-1109, June 2001.
[26] 3rd Generation Partnership Project, Technical Specification Group Radio Access Networks. Multiplexing and Channel coding (FDD). TS 25.212 V5.0.0. March 2002. Available at http://www.3gpp.org
[27] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, October 1998.
[28] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE Journal on Selected Areas in Communications, vol. 17, pp. 451-460, March 1999.
[29] 3rd Generation Partnership Project, Technical specification Group Radio Access Networks. UE Radio Transmission and Reception (FDD). TS 25.101 V5.2.0. March 2002. Available at http://www.3gpp.org.
[30] 3rd Generation Partnership Project, Technical Specification Group Radio Access Networks. Physical channels and mapping of transport channels onto physical channels (FDD). TS 25.211 V5.0.0. March 2002. Available at http://www.3gpp.org.
[31] 3rd Generation Partnership Project, Technical Specification Group Radio Access Networks. High Speed Downlink Packet Access (HSDPA) TS 25.308 V5.1.0 December 2001. Available at http://www.3gpp.org.
[32] S. Das, “Multiuser Information Processing in Wireless Communication,” Ph.D’s Thesis, Rice University, Department of Electrical and Computer Engineering, September 2000.
[33] G. Bauch, “Concatenation of space-time block codes and turbo-TCM,” in Proc. IEEE International Conference on Communications, vol. 2, pp. 1202-1206, June 1999.
[34] R. Gaspa and J. R. Fonollosa, “Space-time coding for UMTS. Performance evaluation in combination with convolutional and turbo coding,“ in Proc. 52nd IEEE Vehicular Technology Conference, vol. 1, pp. 92-98, September 2000.
[35] O. Tirkkonen and A. Hottinen, “Tradeoffs between rate, puncturing and orthogonality in space-time block codes,” in Proc. IEEE International Conference on Communications, vol. 4, pp. 1117-1121, June 2001.
[36] S. Sandhu, R. Heath and A. Paulraj, “Space-time block codes versus space-time trellis,” in Proc. IEEE International Conference on Communications, vol. 4, pp. 1132-1136, June 2001.
[37] K. Majonen and M. J. Heikkila, “Higher data rates with space-time block codes and puncturing in wcdma systems,” in Proc. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 36-40, September 2001.
[38] Y. Rosmansyah, P. Sweeney, and R. Tafazolli, ”Air-interface techniques for achieving high data rates for UMTS,” Second International Conference on 3G Mobile Communication Technologies, pp.368-372, March 2001.
[39] H. Huang, M. Sandell, and H. Viswanathan, “Achieving high data rates on the UMTS downlink shared channel using multiple antennas,” Second International Conference on 3G Mobile Communication Technologies, pp. 373-377, March 2001.
[40] A. G. Burr, “Application of space-time coding techniques in third generation systems,” First International Conference on 3G Mobile Communication Technologies, pp. 276-280, March 2000.
[41] C. G. Jian, ”Concatenated coding for transmit diversity systems,” IEEE Vehicular Technology Conference, vol. 5, pp. 2500-2504, September 1999.
[42] T. H. Liew, J. Pliquett, B. L. Yeap, L. -L. Yang and L. Hanzo, ”Concatenated space-time block codes and TCM, turbo TCM, convolutional as well as turbo codes,” IEEE Global Telecommunications Conference, vol. 3, pp. 1829-1833, November 2000.
[43] T. H. Liew, J. Pliquett, B. L. Yeap, L. -L. Yang and L. Hanzo, ”Comparative study of space time block codes and various concatenated turbo coding schemes,” The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 741-745, September 2000.
[44] L. M. A. Jalloul, K. Rohani, K. Kuchi and J. Chen, “Performance analysis of CDMA transmit diversity methods,” IEEE Vehicular Technology Conference, vol. 3, pp.1326-1330, September 1999.
[45] A. Dabak, S. Hosur, and R. Negi, ”Space time block coded transmit antenna diversity scheme for WCDMA,” IEEE Wireless Communications and Networking Conference, vol.3, pp. 1466-1469, September 1999.
[46] W. G. Kim, B. J. Ku, H. Y. Yang, C. E. Kang, and D. S. Hong, ”Serially concatenated space-time code for high data rate wireless communication systems,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3678-3681, June 2000.
[47] D. D. N. Bevan, R. Tanner and C. R. Ward, “Space-time coding for capacity enhancement in future-generation wireless communications networks,” IEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond, pp. 8/1–8/11, February 2000.
[48] Y. Gong and K. B. Letaief, “Analysis and design of trellis coded modulation with transmit diversity for wireless communications,” IEEE Wireless Communications and Networking Confernce, vol.3, pp. 1356-1361, September 2000.
[49] S. Le Goff and F. O. Al-Ayyan, “Design of bit-interleaved turbo-coded modulations,” IEEE Electronics Letters, vol. 37, pp. 1030-1031, August 2, 2001.
[50] D. Agrawal, V. Tarokh, A. Naguib and N. Seshadri, “Space-time coded OFDM for high data-rate wireless communication over wideband channels,” IEEE Vehicular Technology Conference, vol. 3, pp. 2232-2236, May 1998.
[51] D. Tujkovic, M. Juntti and M. Latva-Aho, “Space-frequency-time turbo coded modulation,” IEEE Communications Letters, vol. 5, pp. 480-482, December 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code