Responsive image
博碩士論文 etd-0708103-122438 詳細資訊
Title page for etd-0708103-122438
論文名稱
Title
計算具表面黏著技術去耦合電容之電腦封裝電源供應系統特性的快模速型
An efficient FDTD modeling of the power delivery system of computer package with SMT decoupling capacitors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-03-09
繳交日期
Date of Submission
2003-07-08
關鍵字
Keywords
時域有限差分法、接地彈跳、解耦合電容、基因演算法、多層印刷電路板
Decoupling Capacitor, Genetic Algorithm, Finite-Difference Time-Domain, Ground Bounce, Multi-layer PCB
統計
Statistics
本論文已被瀏覽 5737 次,被下載 4520
The thesis/dissertation has been browsed 5737 times, has been downloaded 4520 times.
中文摘要
現今電腦系統,運作速度已由數百MHz提升至GHz頻段,當邏輯閘快速切換時,瞬間的電流變化會經由IC接腳,傳至主機板電源供應平面,造成電源面電壓波動之現象,稱為「接地彈跳(Ground bounce)」。為防止接地彈跳造成主機板上IC判斷錯誤,可使用解耦合電容加以防制,本論文運用二維時域有限差分法(2D FDTD),配合一種單網格計算RLC串聯之遞迴演算法,以快速模擬具解耦合電容之電源供應平面;同時,加入Debye model、FDTD-SPICE、及telegrapher’s equation之方法,使此二維模型可廣泛應用至多層板及具槽孔之主機板結構,並可考慮FR4介質之色散效應。最後,為提供配置解耦合電容之有效方式,使用基因演算法,搭配已建立的二維模擬模型,來計算出符合期望目標之電容擺放方法。
Abstract
The operation speed of modern computer system has been upgraded from several hundred MHz to GHz. The instant current will pass to the power plane of the mother board by way of the IC pins and result in electromagnetic wave propagation between the power and ground plane, so called “Ground bounce.” To prevent the ground bounce from IC operation, decoupling capacitors are used. In this thesis, an efficient numerical approach which is based on the two-dimensional (2D) finite-difference time-domain (FDTD) method and with a new recursive algorithm has been used for modeling the power/ground planes characteristics with SMT capacitors above them. By the way, we take several methods, such as Debye model, FDTD-SPICE, and telegrapher’s equation, for modeling various mother board structures. Finally, we use the genetic algorithm for calculating the optimum capacitor placements to meet the expect ground bounce limitation.
目次 Table of Contents
目錄
圖表索引
第一章 序 1
1.1 研究目的與方法 1
1.2 論文大綱 5
第二章 FDTD演算法 6
2.1 馬克斯威爾方程式 6
2.2 三維方程式 6
2.2.1 中央差分與Yee網格配置 7
2.2.2 邊界條件 9
2.3 二維方程式 10
2.3.1 TMz模態之中央差分與網格配置 11
2.3.2 TMz模態之邊界條件 12
2.4 網格大小與穩定準則 13
2.5 集總元件 13
2.5.1 電阻 14
2.5.2 電感 15
2.5.3 電容 15
2.5.4 阻抗性電壓源 15
2.6 程式執行流程 16
第三章 單網格RLC串聯與FR4介質色散 17
3.1 結構及問題描述 17
3.1.1 測試結構I.-裸板 17
3.1.2 測試結構II.-加電容 18
3.1.3 問題討論與改進方向 19
3.2 單網格RLC串聯方法 22
3.2.1 演算法推導 22
3.2.2 模擬結果 26
A. 1顆電容 26
B. 2∼4顆電容 27
C. 結果討論 29
3.3 FR4色散介質 30
3.3.1 Debye media 30
3.3.2 片段線性遞迴迴旋積法(PLRC Method) 31
3.3.3 具Debye model之FDTD演算法 32
3.3.4 模擬結果 33
A. 測試板裸板 33
B. 1顆電容 33
C. 2∼4顆電容 34
D. 結果討論 35
3.4 模型深入驗證 36
第四章 多層板之模擬 38
4.1 結構及模擬方法 38
4.1.1 具封裝結構之PCB 38
4.1.2 以2D FDTD及FDTD-SPICE模擬四層板 39
4.2 FDTD-SPICE 40
4.2.1 等效電流源法 40
4.2.2 牛頓法逼近 41
4.3 模擬與量測結果 42
4.3.1 具封裝結構之PCB-連通柱對數探討 42
A. 1對連通柱 42
B. 2對連通柱 42
C. 4對及8對連通柱 44
D. 連通柱對數對|S21|之影響 44
4.3.2 具封裝結構之PCB-加SMT解耦合電容 45
第五章 微帶線及槽孔之模擬 49
5.1 問題描述 49
5.2 一維方式之微帶線模擬 49
5.2.1 電報方程式 49
5.2.2 輸入端與輸出端 51
A. 輸入端-戴維寧式阻抗性電壓源 51
B. 輸入端-諾頓式阻抗性電流源 51
C. 輸出端-負載電阻 52
5.2.3 微帶線模擬結果 53
5.3 電報方程式與2D FDTD之結合 54
5.3.1 微帶線 55
5.3.2 槽線電源供應平面 55
A. 以一維及二維模擬之模型 55
B. 修正式推導 56
C. 開槽轉角修正 58
5.4 模擬結果 59
A. 微帶線跨越槽孔 59
B. 開槽對接地彈跳之影響-單一開槽 60
C. 開槽對接地彈跳之影響-L字型開槽 61
D. 開槽對接地彈跳之影響-U字型開槽 62
E. 開槽對接地彈跳之影響-開槽完全隔離激發源 63
第六章 以基因演算法考慮電容位置 65
6.1 量測情形與實驗目的 65
6.2 基因演算法 66
6.2.1 計算流程 66
A. 編碼(Coding) 67
B. 初始族群(Initial population) 68
C. 適應函數(Fitness function) 68
D. 選擇策略(Selection strategy) 68
E. 遺傳運算元(Operator) 69
F. 停止規則 70
6.2.2 簡單演算例 70
6.3 基因演算法與2D FDTD計算電容位置 71
6.3.1 計算流程 71
6.3.2 計算結果 73
A. 測試I-擺放3顆電容 73
B. 測試結構II-擺放10顆電容 74
6.3.3 討論與說明 74
第七章 結論 76
參考文獻 78
參考文獻 References
[1] N. Na, M. Swaminathan, J. Libous, and D. O'Connor, “Modeling and simulation of core switching noise on a package and board,” Elec. Comp. and Tech. Conf., 2001, pp. 1095-1101.
[2] J. G. Yook, V. Chandramouli, L. P. B. Katehi, K. A. Sakallah, T. R. Arabi, and T. A. Schreyer, “Computation of switching noise in printed circuit boards,” IEEE Trans. Comp., Packag., and Manufact., vol. 20, Mar. 1997, pp. 64-75.
[3] G. T. Lei, R. W. Techentin, and B. K. Gilbert, “High-frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, May. 1999, pp. 562-569.
[4] N. Jain, J. Silvestro, Z. Cendes, and S. Potluri, “SI issues associated with high speed packages,” Elec. Packag. Tech. Conf., 1997, pp. 310 -312
[5] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, May 1998, pp.111-119.
[6] J. N. Hwang and T. L. Wu, “Coupling of the ground bounce noise to the signal trace with via transition in partitioned power bus of PCB,” IEEE Int. Symp. Electromagn. Compat., 2002, pp. 733 -736.
[7] T. Tarvainen, “Studies on via coupling on multilayer printed circuit boards,” Dep. Of Elec. Engineer., Univer. of Oulu and Esju Oy, Oulu, Finland, 1999.
[8] J. Fang, J. Zhao, and J. Zhang, “Shorting via arrays for the elimination of package resonance to reduce power supply noise in multi-layered area-array IC packages,” IEEE Symp. IC/Packag. Desig. Integra., 1998, pp. 116 -119.
[9] Y. Xiaoning, M. Y. Koledintseva, L. Min, and J. L. Drewniak, “DC power-bus design using FDTD modeling with dispersive media and surface mount technology components,” IEEE Trans. Electromag. Compat., vol. 43, Nov 2001, pp. 579 -587.
[10] J. Chen, T. H. Hubing, T. P. Van Doren, and R. E. DuBroff, “Power bus isolation using power islands in printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 44, May 2002, pp. 373 -380.
[11] T. H. Hubing, J. L. Drewniak, T. P.Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” in Proc. IEEE Int. Trans. Electromag. Compat., 1995, pp. 155-165.
[12] J. Chen, M. Xu, T. H.Hubing, J. L. Drewniak, T. P. Van Doren, and R. E. Dubroff, “Experimental evaluation of power bus decoupling on a 4-layer printed circuit board,” IEEE Int. Symp. Electromag. Compat., 2000, pp. 335-338.
[13] W. Cui, J. Fan, H. Shi, and J. L. Drewniak, “DC power bus noise isolation with power islands,” IEEE Int. Symp. Electromag. Compat., 2001, pp.899-903.
[14] H. Shi, J.Fan, J. L. Drewniak, T. H. Hubing, and T. P. van Doren, “Modeling multilayered PCB power-bus designs using MPIE based circuit extraction technique”, IEEE Int. Symp. Electromag. Compat., 1998, pp.652-655.
[15] J. Yun and T. H. Hubing, “On the interior resonance problem when applying a hybrid FEM/MoM approach to model printed circuit boards,” IEEE Trans. Electromag. Comp., vol. 44, May 2002, pp. 318 -323.
[16] T. L. Wu, Y. H. Lin, J. N. Hwang, and J. J. Lin, “The effect of test system impedance on measurements of ground bounce in printed circuit boards,” IEEE Trans. Electromag. Compat. , vol. 43, Nov 2001, pp. 600 -607.
[17] A. Taflove, “Computational electromagnetic the finite-difference time-domain method,” Artech House, 1995.
[18] N. Orhanovic, R. Raghuram, and N. Matsui, “Full wave analysis of planar interconnect structures using FDTD-SPICE,” Electro. Comp. and Tech. Conf., 2001, pp. 489 -494.
[19] C. N. Kuo, B. Houshmand, and T. Itoh, “FDTD analysis of active ciruits with equivalent current source approach,” Anten. and Propa. Soc. Int. Symp., AP-S. Digest, vol. 3, 1995, pp. 1510-1513.
[20] C. N. Kuo, R. B. Wu, B. Houshmand, and T. Itoh, “Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach,” IEEE Microwave and Guided Wave Letters, vol. 6, May 1996, pp.199-201.
[21] C. R. Paul, “Incorporation of terminal constraints in the FDTD analysis of transmission lines,” IEEE Trans. Electromag. Compat., vol. 36, May 1994, pp. 85-91.
[22] T. P. Montoya, “Modeling 1-D FDTD transmission line voltage sources and terminations with parallel and series RLC loads,” IEEE Int. Symp. Anten. and Propa. Soc., vol. 4, 2002, pp.242-245.
[23] C. T. Wu, G. H. Shiue, S. M. Lin, and R. B. Wu, “Composite effects of reflections and ground bounce for signal line through a split power plane,” IEEE Trans. Adv. Packag., vol. 25, May 2002, pp.297-301.
[24] J. M. Johnson and V. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Anten. and Propa. Magaz. , vol. 39, Aug 1997, pp. 7 -21.
[25] J. P. Berenger, “A perfectly matched layer for free-space simulation in finite-difference computer codes,” submitted to Annales Telecommunications, 1994.
[26] R. J. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Anten. and Propa., vol. 40, 1992, pp. 1297-1301.
[27] R. J. Luebbers, D. Steich, and K. Kunz, “FDTD calculation of scattering from frequency-dependent materials,” IEEE Trans. Anten. and Propa., vol. 41, 1993, pp. 1249-1257.
[28] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Trans. Anten. and Propa., vol. 44, 1996, pp. 792-797.
[29] D. K. Cheng, “Fundamentals of engineering electromagnetics,” Addison Wesley Publishing Company, pp.342.
[30] J. H. Holland, “Adaptation in nature and artificial system,” 1970.
[31] E. Michielssen, J. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Micro. Theo. and Tech., June/July 1993, pp. 1024-1031.
[32] R. L. Haupt, “An introduction to genetic algorithms for electromagnetics,” IEEE Ante. and Propa. Magaz., April 1995, pp. 7-15.
[33] V. Schnecke and O. Vornberger, “Genetic design of VLSI-laouts,” IEE Genetic Algorithms in Engineering Systems: Innovations and Applications, Sep. 1995, pp.430-435.
[34] J. R. Reque, M. Ribo, J. M. Garrell, and A. Martin, “A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization,” IEEE Trans. Electromag. Compat., vol. 43, Nov. 2001, pp.520-530.
[35] W. Xin, C. M. Lee, and M. H. Pong, “A novel approach base on electric field analysis to reduce crosstalk problem on PCB,” IEEE Power Electro. Special. Conf., PESC, 1999, pp.845-849.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code