Responsive image
博碩士論文 etd-0708104-131310 詳細資訊
Title page for etd-0708104-131310
論文名稱
Title
應用電子束微影術於格式化半導體基板與光子晶體之研製
Application of Electron-Beam Lithography to the Fabrication of Patterned Semiconductor Substrate and Photonic Crystal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-17
繳交日期
Date of Submission
2004-07-08
關鍵字
Keywords
光子晶體、格式化半導體基板
Patterned Semiconductor Substrate, Photonic Crystal
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
本論文利用電子束微影術及電感耦合電漿乾蝕刻機(ICP-RIE),成功地完成格式化半導體基板、分布式布拉格反射鏡(DBR)邊射型雷射、二維光子晶體以及二維光子晶體微m共振腔的製程。我們以自行架設之電子束微影術系統,測試出其最小可寫線寬約50nm,最大可寫範圍為500×500µm2,並成功地定義出各種陣列圖案。接下來利用電子束微影定義出圓洞直徑100nm,間隔為100nm的陣列,並以乾蝕刻製程製作面積為100×100µm2之格式化半導體基板,其中格式化Si基板蝕刻深度為50nm,格式化GaAs基板為20nm,格式化半導體基板將提供成長量子點之用。在研製DBR邊射型雷射部分,各以二對及三對DBR分別成形於雷射共振腔兩側,其中DBR的半導體反射鏡厚度(Ds)皆為209nm,DBR的空氣間隔寬度(Da)分別為240nm與720nm,可在波長960nm達到高反射率。
我們設計具有TE極化不存在的光子能隙之二維光子晶體,結構為空氣圓柱呈三角晶格排列,其對應的波長範圍為936.45nm至968.85nm,圓柱半徑(R)為327nm,晶格常數(A)為742nm。同時在此二維光子晶體中間製作一點缺陷,形成單點缺陷微共振腔,並模擬出缺陷的光場模態。我們也模擬在R為56nm,A為224nm,以及中間的缺陷增加至七個,形成七點缺陷微共振腔後,其光場模態將變為單極模態(monopole mode),對應波長為959.86nm。在DBR邊射型雷射、二維光子晶體與微共振腔的製程上,電子束微影定義圖案後,蒸鍍鉻並將之掀離,利用ICP-RIE深蝕刻至基板。
最後以我們架設的微光激螢光光譜量測系統,初步量測出二維光子晶體與微共振腔在相同的雷射激發功率下,微光激螢光光譜訊號強度在波長960nm時相差4.5倍。二維光子晶體的正規化微光激螢光光譜訊號,在波長860nm到980nm時皆低於0.5,而微共振腔在波長985nm的正規化訊號強度最大,跟製程完成後實際之微共振腔,缺陷模態所對應的波長984nm非常接近。另一方面,室溫下操作的二維光子晶體微共振腔,L-L特性曲線之臨界功率約為5.13到6.81mW,將操作溫度固定在15℃時,臨界功率下降至約1.4到3.13mW。
Abstract
In this thesis, we successfully fabricated patterned semiconductor substrates, edge-emitting lasers with deeply etched distributed Bragg reflectors (DBRs), two-dimensional photonic crystals (2DPCs) and two-dimensional photonic crystal microcavities (2DPC microcavities) by electron-beam lithography and inductively coupled plasma-reactive ion etching (ICP-RIE). We have obtained a minimum writing linewidth of 50nm and a maximum writing range of 500×500µm2 in our electron-beam lithography system. Pitch arrays of 100nm pitch-diameter and 100nm separation have been formed on 100×100µm2 semiconductor substrates. The etching depth of patterned Si substrates and patterned GaAs substrates are 50nm and 20nm, respectively. In the design of edge-emitting lasers with deeply etched DBRs, two and three pairs of DBRs were formed on the edge of laser cavity, respectively. To obtain high reflectance at wavelength (λ) = 960nm, 209nm mirror width and 240nm or 720nm air gap were fabricated.
In the design of 2DPCs, a triangular array of air columns was adopted. The lattice constant (A) and column radius (R) are 742nm and 327nm, respectively. It has a band gap for TE modes corresponding to wavelength range in 936.45nm~968.85nm. We placed single defect in the 2DPCs to form 2DPC microcavities. In addition, we simulated the photonic band structure of a seven-defect 2DPC microcavity with A = 224nm and R = 56nm. We obtained a monopole defect mode at λ = 959.86nm.
To measure 2DPCs and 2DPC microcavities, we have set up a micro-photoluminescence (Micro-PL) spectrum measurement system. We observed the Micro-PL intensity of the 2DPC microcavity is 4.5 times larger than 2DPCs at λ = 960nm in the same pumping power. The 2DPC microcavities show a lasing performance under optical pumping. The threshold power of 2DPC microcavities is 5.13mW~6.81mW at room temperature and decreases to 1.4mW~3.13mW at 15℃.
目次 Table of Contents
第一章 緒論..............................................1
1-1 前言..........................................1
1-2 格式化半導體基板..............................1
1-3 光子晶體.............................................2
1-3-1 一維光子晶體....................................3
1-3-2 二維光子晶體....................................4
1-4 論文架構.............................................4

第二章 儀器架構及原理....................................5
2-1 電子束微影術的原理...................................5
2-1-1 歷史背景........................................5
2-1-2 基本原理........................................5
2-1-3 儀器架構........................................6
2-1-4 鄰近效應........................................7
2-2 電子束微影術的實驗結果..............................10

第三章 元件設計與模擬...................................18
3-1 光子晶體的特性與理論................................18
3-1-1 光子能隙.......................................18
3-1-2 光子晶體中的缺陷...............................19
3-1-3 光子晶體理論...................................20
3-2 元件設計與模擬結果..................................21
3-2-1 DBR邊射型雷射..................................21
3-2-2 二維光子晶體...................................30

第四章 元件製程.........................................51
4-1 製程流程圖..........................................51
4-2 製程示意圖..........................................52
4-2-1 格式化半導體基板...............................52
4-2-2 二維光子晶體與DBR邊射型雷射....................53
4-3 製程步驟與實驗結果..................................53
4-3-1 格式化半導體基板...............................53
4-3-2 二維光子晶體與DBR邊射型雷射....................66

第五章 量測結果與分析...................................76
5-1 微光激螢光光譜量測系統架構..........................76
5-2 量測結果與分析......................................81

第六章 結論.............................................95

參考文獻................................................97
參考文獻 References
[1] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Applied Physics Letters, vol. 40, no. 11, p. 939, 1982.
[2] M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40 Gbit/s,” Japanese Journal of Applied Physics, vol. 40, part 2, no. 5B, p. L488, 2001.
[3] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” Journal of Applied Physics, vol. 91, no. 3, p. 922, 2002.
[4] H. Nakamura, S. Nishikawa, S. Kohmoto, K. Kanamoto, and K. Asakawa, “Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements,” Journal of Applied Physics, vol. 94, no. 2, p. 1184, 2003.
[5] K. Nishi, H. Saito, and S. Sugou, “A narrow photoluminescence linewidth of 21 meV at 1.35 µm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Applied Physics Letters, vol. 74, no. 8, p. 1111, 1999.
[6] K. Yamaguchi, K. Yujobo, and T. Kaizu, “Stranski-Krastanov growth of InAs quantum dots with narrow size distribution,” Japanese Journal of Applied Physics, vol. 39, part 2, no. 12A, p. L1245, 2000.
[7] Choongseop Lee, and Albert-László Barabási, “Spatial ordering of islands grown on patterned surfaces,” Applied Physics Letters, vol. 73, no. 18, p. 2651, 1998.
[8] W. Seifert, N. Carlsson, A. Petersson, L.-E. Wernersson, and L. Samuelson, “Alignment of InP Stranski–Krastanow dots by growth on patterned GaAs/GaInP surfaces,” Applied Physics Letters, vol. 68, no. 12, p. 1684, 1996.
[9] H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, “Strain-engineered self-assembled semiconductor quantum dot lattices,” Applied Physics Letters, vol. 78, no. 1, p. 105, 2001.
[10] E. Kuramochi, J. Temmyo, T. Tamamura, and H. Kamada, “Perfect spatial ordering of self-organized InGaAs/AlGaAs box-like structure array on GaAs (311)B substrate with silicon nitride dot array,” Applied Physics Letters, vol. 71, no. 12, p. 1655, 1997.
[11] Y. Nakamura, O. G. Schmidt, N. Y. Jin-Phillipp, S. Kiravittaya, C.
Müller, K. Eberl, H. Gräbeldinger, and H. Schweizer, “Vertical alignment of laterally ordered InAs and InGaAs quantum dot arrays on patterned (001) GaAs substrates,” Journal of Crystal Growth, vol. 242, p. 339, 2002.
[12] S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, “Site-controlled self-organization of individual InAs quantum dots by scanning tunneling probe-assisted nanolithography,” Applied Physics Letters, vol. 75, no. 22, p. 3488, 1999.
[13] Y. Nakamura, N. Ikeda, S. Ohkouchi, Y. Sugimoto, H. Nakamura, and K. Asakawa, “Two-dimensional InGaAs quantum-dot arrays with periods of 70–100nm on artificially prepared nanoholes,” Japanese Journal of Applied Physics, vol. 43, no. 3A, p. L362, 2004.
[14] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[15] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[16] E. Yablonovitch, “How to be truly photonic,” Science, vol. 289, p. 557, 2000.
[17] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, p. 143, 1997.
[18] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, p. 608, 2000.
[19] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, p. 1819, 1999.
[20] K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technology Letters, vol. 7, p. 1119, 1995.
[21] T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama, and K. Iga, “A novel short-cavity laser with deep-grating distributed Bragg reflectors,” Japanese Journal of Applied Physics, vol. 35, part 1, no. 2B, p. 1390, 1996.
[22] E. Höfling, R. Werner, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors,” Electronics Letters, vol. 35, no. 2, p. 154, 1999.
[23] E. Höfling, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Edge-emitting GaInAs-AlGaAs microlasers,” IEEE Photonics Technology Letters, vol. 11, no. 8, p. 943, 1999.
[24] M. Ariga, Y. Sekido, A. Sakai, T. Baba, A. Matsutani, F. Koyama, and K. Iga, “Low Threshold GaInAsP Lasers with Semiconductor/Air Distributed Bragg Reflector Fabricated by Inductively Coupled Plasma Etching,” Japanese Journal of Applied Physics, vol. 39, part 1, no. 6A, p. 3406, 2000.
[25] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photonics Technology Letters, vol. 12, no. 9, p. 1126, 2000.
[26] 陳宏賓,“應用電子束微影術於電制吸收光調變器之研製”,國立中山大學光電工程研究所碩士論文,2003.
[27] F. Murai, J. Yamamoto, H. Yamaguchi, S. Okazaki, K. Sato, and H. Hayakawa, “High-speed single-layer-resist process and energy- dependent aspect rations for 0.2μm electron-beam lithography,” Journal of Vacuum Science Technology, B12, p. 3874, 1994.
[28] http://nano.nchc.gov.tw
[29] 蔡雅芝,“淺談光子晶體”,物理雙月刊,二十一卷,四期,p. 445,1999.
[30] R. Jambunathan, and J. Singh, “Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 7, p. 1180, 1997.
[31] T. Takagi, “Refractive index of Ga1-xInxAs prepared by vapor-phase epitaxy,” Japanese Journal of Applied Physics, vol. 17, no. 10, p. 1813, 1978.
[32] S. Adachi, “GaAs, AlAs, and AlxGa1–xAs Material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, no. 3, p. R1, 1985.
[33] D. D. Sell, H. C. Casey Jr., and K. W. Wecht, “Concentration dependence of the refractive index for n- and p-type GaAs between 1.2 and 1.8 eV,” Journal of Applied Physics, vol. 45, no. 6, p. 2650, 1974.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.81.94
論文開放下載的時間是 校外不公開

Your IP address is 3.16.81.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code