Responsive image
博碩士論文 etd-0708104-184342 詳細資訊
Title page for etd-0708104-184342
論文名稱
Title
渦輪碼解碼器數位矽智產建構器實作
Implementation of Turbo Code Decoder IP Builder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-17
繳交日期
Date of Submission
2004-07-08
關鍵字
Keywords
數位矽智產、通道解碼、渦輪碼、腓特比、軟輸出腓特比
ip, channel coding, sova, turbo code, intellectual property, viterbi
統計
Statistics
本論文已被瀏覽 5778 次,被下載 28178
The thesis/dissertation has been browsed 5778 times, has been downloaded 28178 times.
中文摘要
  渦輪碼(Turbo Code),由於它提供了優越的錯誤更正能力,所以近年來被廣泛的運用在許多新穎的無線通訊系統以及資料儲存系統之中。然而,由於渦輪碼需要尋找所有狀態點的機率(Probability)以及尋找傳輸序列,這需要大量的記憶體空間以及複雜的記憶體控制,使得渦輪碼硬體的實現並不是這麼容易。
  在本論文中,提出了一個可參數化碼率(code rate)以及位元寬度的渦輪碼解碼器數位矽智產(Intellectual Property,IP),渦輪碼解碼器核心單元SISO(Soft-In Soft-Out)是根據軟輸出腓持比演算法(SOVA)來設計。根據混合式向後追溯法則(hybrid trace-back scheme),在論文中所採用的SISO單元可達到更快的路徑搜尋,且儲存路徑的記憶體相較於傳統的向後追溯法(trace-back)也減少了70 %。另外,渦輪碼解碼器在每次的遞迴解碼需執行兩組的SISO單元來對正常資料區塊以及交錯(interleaving)後的資料區塊做運算,在本論文中所採用的架構,僅使用一個SISO單元來實現兩個SISO的運算,減少了多餘的控制。接著在渦輪碼解碼器的設計中也採用了Threshold和Normalization技巧來改善位元錯誤率(bit error rate)的效能。另外,在解碼器的設計之中也加入了遞迴停止機制(Termination criteria)電路來降低解碼時所需要的遞迴(iteration)週期次數。
  本論文中所介紹的渦輪碼解碼器已經過完整測試及驗證,因此可成為一個可靠且實用的數位矽智產。
Abstract
Turbo Code, due to its excellent error correction capability, has been widely used in many modern wireless digital communication systems as well as data storage systems in recent years. However, because the decoding of the Turbo Code involves finding all the state probability and transition sequence, its hardware implementation is not straightforward as it requires a lot of memory and memory operation. In this thesis, a design of Turbo Code decoder IP (Intellectual Property) is proposed which can be parameterized with different word-lengths and code rates. The design of the core SISO (Soft-In Soft-Out) unit used in Turbo Code decoder is based on the algorithm of SOVA (Soft-Output Viterbi Algorithm). Based on the hybrid trace-back scheme, the SISO proposed in this thesis can achieve fast path searching and path memory reduction which can be up to 70% compared with the traditional trace-back approach. In addition, every iterative of Turbo Code decoding performs two SISO operations on the block of data with normal and interleaving order. In our proposed architecture, these two SISO operations can be implemented on a single SISO unit with only slightly control overhead. In order to improve the bit error rate performance, the threshold and normalization techniques are applied to our design. In addition, the termination criteria circuit is also included in our design such that the iteration cycle of the decoding can be reduced. The proposed Turbo Code decoder has been thoroughly tested and verified, and can be qualified as a robust IP.
目次 Table of Contents
Chapter 1. Introduction
1.1 Background and motivation
1.2 Scope of the thesis

Chapter 2. Two-Step SOVA
2.1 Two-Step SOVA architecture
2.2 Design of Two-Step SOVA
2.2.1 BMU (Branch Metric Unit)
2.2.2 ACSU (Add-Compare-select Unit)
2.2.3 SMU (Survivor path Memory Unit)
2.2.4 PCU (Path Comparison Unit)
2.2.5 RMU (Reliability Measure Unit)

Chapter 3. Turbo Code
3.1 Turbo Code Encoder
3.1.1 Convolutional Encoder
3.1.2 Recursive Systematic Convolutional (RSC) Encoder
3.1.3 Trellis Termination
3.2 Turbo Code decoder
3.3 Implementation and improvement of Turbo Code
3.3.1 Interleave and De-interleave
3.3.2 Threshold and normalization
3.3.3 Termination criterion
3.4 Performance Comparison

Chapter 4. IP builder
4.1 Key features and claims
4.2 Configuration information and parameters
4.2.1 System parameters
4.2.2 Configurable parameters
4.2.3 Programmable parameters
4.3 Comprehensive technical specification and data sheet
4.4 Application method of the IP
4.5 Provided design models
4.5.1 Reference model
4.5.2 RTL Model
4.5.3 Gate Level Model
4.6 Verification strategy
4.6.1 Functional Verification
4.6.2 Coding Style Checking
4.6.3 Code Coverage Testing
4.6.4 Gate-Level Verification
4.7 Test plan/methods and testability measurement
4.7.1 Random case Testing
4.7.2 Corner case Testing
4.7.3 FPGA Prototyping with BIST mode

Chapter 5. Conclusion
References
參考文獻 References
[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE ICC’ 93, Vol. 2, pp.1064-1070, May 1993.
[2] Third-Generation Paration Partnership Project. 3GPP specifications. [Online]. 3GPP Home Page, Available:http//www.3gpp.org.
[3] Third-Generation Paration Partnership Project. 3GPP2 specifications. [Online]. Welcome to 3GPP2 Homepage! , Available:http//www.3gpp2.org.
[4] TIA/EIA/CDMA2000, “ Physical layer standard for CDMA2000 standards for spread spectrum systems,” June, 2000.
[5] J. Hagenauer, P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” IEEE GLOBECOM 1989, vol.3, pp.1680-1686, Nov 1989.
[6] Z. Wang, K. K. Parhi, “High performance, high throughput Turbo/SOVA decoder design,” in IEEE Trans. Comm., vol. 51, pp. 570-579, April 2003.
[7] L. Lin, R. S. Cheng, “Improvements in SOVA-based decoding for Turbo codes,” in Proc. IEEE ICC’ 97, pp. 1473-1478, June 1997.
[8] L. Papke, P. Robertson, “Improved decoding with the SOVA in a parallel concatenated (Turbo-code) scheme,” in Proc. IEEE ICC’ 96, pp. 102-106, June. 1996.
[9] P. Robertson, E. Villebrun, P Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE ICC’ 95, pp. 1009-1013, June 1995.
[10] A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes,” IEEE J. on Sel. Areas in Comm. , Vol. 16-2, pp. 260-264, Feb 1998.
[11] M. P. C. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence between SOVA and max-log-MAP decoding,” IEEE Comm. Lett., vol. 2-5, pp. 137-139, May 1998.
[12] J. Tan, G. L. Stuber, “A MAP equivalent SOVA for non-binary Turbo codes” in IEEE ICC’ 2000, vol. 2-1, pp. 602-606, June 2000
[13] C. Ling, L. Cui, X. Wu, “Further results on the equivalence between SOVA and max-log-MAP decodings,” in Proc. IEEE ICCT’ 2000, vol. 2, pp. 22-25, Aug 2000.
[14] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-260, April 1967.
[15] C. Berrou, P. Adde, E. Angui, and etc., “A low complexity soft-output Viterbi decoder architecture,” in Proc. IEEE ICC’ 93, pp. 737-740, May 1993.
[16] E. Yeo, P. Pakzad, B. Nikolic, V.Anantharam, “VLSI architectures for iterative decoders in magnetic recording channels,” IEEE Trans. Magnetics, vol.37-2, p 748-55, March 2001.
[17] Shung, Bernard C, Paul H S, and etc., “VLSI architectures for metric normalization in the Viterbi algorithm,” in Proc. IEEE ICC’ 90, vol. 4, pp. 1723-1728, April 1990.
[18] E. J. Hwang, J. H. Lee, S. Kim, and etc., “Design of a performance enhanced traceback algorithm for the Viterbi decoder,” IEEE Electronics Lett., vol. 32-14, pp.1254-1255, July 1996.
[19] M. B. Lin, “New path history management circuits for Viterbi decoders,” IEEE Trans. Comm., vol.48-10, pp. 1605-1608, Oct 2000.
[20] E. Boutillon, N. Demassieux, “High speed low power architecture for memory management in a Viterbi decoder,” in Proc. IEEE ISCAS’ 96, vol. 4, pp.284-287, May 1996.
[21] P. J. Black, T. H. Y. Meng, “Hybrid survivor path architectures for Viterbi decoders,” in Proc. IEEE ICASSP’ 93, vol. 1, pp.433-436, April 1993.
[22] European Telecommunications Standards Institute (ETSI), "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television," ETSI EN 300 744, July 2001.
[23] D. Divsalar, F. Pollara, “Turbo codes for deep-space communications,” JPL TDA Progress Report 42-120, Feb 1995.
[24] Z. Wang, Z. Chi, K. K. Parhi, “Area-efficient high speed decoding schemes for Turbo/MAP decoders,” in Proc. IEEE ICASSP ‘2001, vol. 4, pp. 2633-2636, May 2001.
[25] Z. Wang, Y. Tang, Y. Wang, “Low hardware complexity parallel Turbo decoder architecture,” in Proc. IEEE ISCAS’ 2003, vol. 2, pp. 53-56, May 2003.
[26] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of Turbo decoder design for wireless applications,” In proc, SiPS’99, pp. 503-512, Oct 1999.
[27] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two simple stopping criteria for Turbo decoding,” IEEE Tran. Comm., vol. 47, pp. 1117-1120, Aug 1999.
[28] P. Jung, M. Nasshan, “ Performance evaluation of Turbo codes for short frame transmission systems,” Electronics Lett., vol. 30-2, pp. 111-113, Jan 1994.
[29] M. Keating and P. Bricaud, “Reuse methodology manual for system-on-a-chip designs”, Kluwer Academic Publishers, June 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code