Responsive image
博碩士論文 etd-0708105-161118 詳細資訊
Title page for etd-0708105-161118
論文名稱
Title
高密度電漿化學氣相沉積系統在半導體元件上之研究
Study on semiconductor devices by high density plasma chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-07
繳交日期
Date of Submission
2005-07-08
關鍵字
Keywords
半導體元件、高密度電漿化學氣相沉積、碳化矽
SiC, semiconductor device, silicon carbide, HDPCVD
統計
Statistics
本論文已被瀏覽 5710 次,被下載 14
The thesis/dissertation has been browsed 5710 times, has been downloaded 14 times.
中文摘要
本論文主要是利用高密度電漿化學氣相沉積系統製作出新穎的半導體發光元件之多層量子井結構和SONOS非揮發性記憶體元件之載子儲存層。
在發光二極體技術的研究方面,寬能隙含氫非晶相碳化矽和多孔碳化矽的藍色、綠色螢光最近已被應用在光電元件上。然而,由於它們擁有非直接能隙的特徵,所以這些發光二極體的量子效率非常低。在本實驗中,我們製作出五週期含氫非晶相碳化矽多層量子井結構來增大其量子效率。在本研究中,有幾項值得注意得特點: (一) 利用高密度電漿化學氣相沉積系統製作出非晶相碳化矽多層量子井結構和其在室溫下顯現出可見光的光致螢光。(二) 非晶相碳化矽多層量子井結構在氟離子佈植及熱退火後,其光致螢光能量位移至高能量區域。(三) 利用二氧化矽能障的非晶相碳化矽多層量子井的光致螢光強度大於利用氮化矽能障。(四) 利用高密度電漿化學氣相沉積系統所沉積的薄膜,甚至在低溫(200度),有良好的附著性附著在玻璃或矽晶圓上。
在SONOS非揮發性記憶體的研究方面,SONOS是一種二氧化矽/氮化矽/二氧化矽三明治結構的多層性元件,其目的是要將載子儲存至氮化矽薄膜層。在高密度電漿化學氣相沉積製程下,我們研究含氧碳化矽(SiC:O)薄膜和氧化碳化矽(SiCO)薄膜作為載子儲存層。在本研究中,有幾項值得注意得特點: (一) 藉由含氧碳化矽對於不同氧含量的電容-電壓特性圖及電流-電壓特性圖發現,當氧含量依序漸增時,含氧碳化矽之記憶窗口大小隨氧含量的增加而變小,另外藉由氧含量的控制,可達到較大的崩潰電壓值。(二) 在碳化矽薄膜的氧化研究方面,我們發現低溫(800度)熱氧化比高溫(925度)熱氧化的含氧碳化矽,具有更高的記憶窗口,亦即具有較高的載子儲存能力。
Abstract
In this thesis, high density plasma chemical vapor deposition (HDPCVD) is used to fabricate novel multiple quantum well structure of light emitting diodes (LEDs) and charge storaged layers of SONOS nonvolatile semiconductor memories (NVSMs).
On the study of the light emitting diodes (LEDs) technology, wide band gap hydrogenated amorphous silicon carbide and porous silicon carbide has blue or green luminescence are currently being investigated for applications in optoelectronic devices. However, due to the indirect band gap character, the quantum efficiency of these LEDs is very low. In our experiment, we fabricate 5-periods hydrogenated amorphous silicon carbide multiple quantum well structure to enhance the luminescence efficiency. In our study, there are some following notable features: (1) The a-SixC1-x multiple quantum well structure prepared by high density plasma chemical vapor deposition and it shows visible photoluminescence at room temperature. (2) After fluorine ions implantation and thermal annealing, The PL energy of a-SixC1-x multiple quantum well shift to high energy. (3) The PL intensity of SiO2-barrier SixC1-x multiple quantum well is larger than SiNx-barrier. (4) The film adheres well to glass or Si wafer even at low deposition temperature, e.g. 200 0C by high density plasma chemical vapor deposition.
On the study of the silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMs) technology, the SONOS is a multi-dielectric device consisting of an oxide-nitride-oxide (ONO) sandwich in which charge storage takes place in discrete traps in the silicon nitride layer. In addition to silicon nitride as the storage layer, we have studied the oxide/SiC:O/oxide sandwiched structures and thermal oxidation of SiC layer as a storage layer by HDPCVD processes. In our study, there are some following notable features: (1) From the capacitance-voltage and current-voltage characteristics of oxygen-incorporated silicon carbide with different oxygen content, it is observed that the memory window is decreased with increasing the oxygen content. By controlling the oxygen content, a higher breakdown voltage can be achieved. (2) In the study of the oxidation of SiC, it is found that low temperature (800 ℃) oxidized SiC shows a larger memory window than that of the high temperature (925 ℃) oxidized SiC by high density plasma chemical vapor deposition.
目次 Table of Contents
Chinese Abstract..........................i
English Abstract..........................iii
Acknowledgment........................... v
Contents..................................vii
Table and Figure Captions.................ix

Chapter 1 Introduction
1.1 General Background................................1
1.1.1 Silicon carbide light emitting diodes...........3
1.1.2 SONOS nonvolatile memory device.................5
1.2 Organization of the dissertation..................7

Chapter 2 Blue-green photoluminescence of 5-period hydrogenated silicon carbide multiple quantum well
2.1 Motivation........................................8
2.2 Blue shift of SixC1-x/SiO2 multiple quantum well by fluorine ions implantation..............................9
2.3 Blue shift of SixC1-x multiple quantum well by decrease well-layer thickness..........................11
2.4 The luminescence of 5-period SixC1-x multiple quantum well with different barrier layer..............13
2.5 Conclusion.......................................14

Chapter 3 Memory effect of oxide/SiC:O/oxide sandwiched structures
3.1 Motivation.......................................15
3.2 Experimental procedures..........................16
3.3 Results and Discussion...........................17
3.4 Conclusion.......................................19

Chapter 4 A Novel Distributed Charge Storage Element Fabricated by Oxidation of hydrogenated SixC1-x
4.1 Motivation.......................................21
4.2 Experimental procedures..........................22
4.3 Results and Discussion...........................23
4.4 Conclusion.......................................25

Chapter 5 Suggestion of future work...................26
References.............................................27
參考文獻 References
Chapter 1
[1] Hong Xiao, Introduction to semiconductor manufacturing technology
[2] S. M. Sze, Semiconductor devices physics and technology, 2nd Edition, 2003
[3] Sidney Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman and Photoluminescence Spectroscopy 1994
[4] J. I. Pankove and D. E. Carlson, Appl. Phys. Lett. 29, 620 (1976)
[5] R. A. Street, C Tsang and J. Knights, Proc. 14th Int. Conf. Phys. Semiconductors, 1978
[6] T. S. Nashashibi and I. G. Austin J. Phys. Proc. 9th Intern. Conf. Amorphous and Liquid Semiconductor 1981
[7] M. Konagai, K. Nishihata, K. Komori and K. Takahashi, Proc. IEEE 15th Photovoltaic Specialists Conference, Florida, 1981
[8] L. Hoffman, G. Ziegler, D. Theis, and C. Weyrich, J. Appl. Phys. 53,6962(1982)
[9] D. Engemann, R. Fischer, and J. Knecht, Appl. Phys. Lett. 32,567(1978)
[10] H. Munekata and H. Kukimoto, Appl. Phys. Lett. 42,432(1983)
[11] D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, Jpn. J. Appl. Phys.,Part 2 24, L806(1985)
[12] J. C. Vial, L. T. Canham and W. Lang, Light Emission from Silicon, Special Issue of J. Lumin. 57 1994
[13] J. S. Shor, I. Grimberg and A. D. Kurtz, Appl. Phys. Lett. 62, 2836, 1993
[14] G. L. Harris, Properties of Silicon Carbide (INSPEC, London, U.K.,1995)
[15] G. Pensl, H. Morkoc, B. Monemar, and E. Janzén, Silicon Carbide, Ⅲ Nitrides and Related Materials: PartsⅠand Parts Ⅱ (Trans. Tech.,Switzerland,1998)
[16] SiC Materials and Devices, Semiconductors and Semimetals Vol. 52, edited by Y. S. Park (Academic, London, U.K.,1998)
[17] W. D. Brown and J. E. Brewer, Nonvolatile Semiconductor Memory Technology, IEEE press New York, p. 309, 1998.
[18] William D. Brown, Joe E. Brewer, Nonvolatile semiconductor memory technology/a comprehensive guide to understanding and using NVSM devices, 1998
[19] Y. Yang and M. H. Write, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Trans. Comp. Packag., Manufact. Tech., 20, 190 (1997).

Chapter 2
[1] L. T. Canham, Appl. Phys. Lett. 57, 1046 (1900)
[2] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature 384, 338 (1996)
[3] A. G. Cullis, L. T. Canham and P. D. J. Calcott, J. Appl. Phys. 82, 3 (1997)
[4] J.I. Pankove and D.E. Carlson, Appl. Phys. Lett. 29, 620 (1976)
[5] Dusit Kruangam, Masahiro Deguchi, Toshihiko Toyama, Hiroaki Okamoto and Yoshihiro Hamakawa, IEEE transactions on devices. Vol. 35, NO.7, July 1988
[6] Sascha M. Paasche, Toshihiko Toyama, Hiroaki Okamoto and Yoshihiro Hamakawa IEEE transactions on devices. Vol. 36, NO.12, December 1989
[7] Hidenori Mimura, Takahiro Matsumoto and Yoshihiko Kanemitsu, Appl. Phys. Lett. 65 (26), 26 (1994)
[8] K. Koga, T. Nakata and T. Niina, Extended Abstract of the 17th International Conference on solid State Devices and Materials, p.249
[9] S. Wolf, Silicon Processing For The VLSI Era, vol. 1, 2nd edition, Lattice Press, Sunset Beach, California, 706 (1999).

Chapter 3
[1] F. Masuoka, M. Assano et. Al, IEEE IEDM Tech. Dig., (1984) p.464-467
[2] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech, J., 46, 1288 (1967).
[3] J. D. Blauwe, “Nanocrystal nonvolatile memory devices,” IEEE Transaction on Nanotechnology, 1, 72 (2002).
[4] D. F. Bentchkowsky, Proc. IEEE 1970, 58, p. 1207.
[5] S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981), p. 504.
[6] L. I. Chen, K. A. Pickar, and S. M. Sze, “Carrier transport and storage effects in Au ion implanted SiO2 structures,” Solid-St. Electron., 15, 979 (1972).
[7] M. H. White, D. A. Adams, and J. Bu, IEEE circuits & devices, 22 (2000).
[8] M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 1996, p. 52.
[9] S. Wolf, Silicon Processing For The VLSI Era, vol. 1, 2nd edition, (Lattice Press, Sunset Beach, California, 1999), p. 706.
[10] M. Petersen, M. T. Schulberg, and L. A. Gochberg, Appl. Phys. Lett., 82, 2041 (2003).

Chapter 4
[1] D. Kahng and S. M. Sze, Bell Syst. Tech, J., 46, 1288 (1967).
[2] J. D. Blauwe, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[3] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[4] Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[5] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, IEEE Electron Device Lett., 18, 278 (1997).
[6] M. H. White, D. A. Adams, and J. Bu, IEEE circuits & devices, 22 (2000).
[7] M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996)
[8] V. A. Gritsenko, S. N. Svitasheva, I. P. Petrenko, Hei Wong, J. B. Xu, and I. H. Wilson, Journal of Electrochem. Soc., 146, 780 (1999).
[9] Y. C. King, T. J. King, and C. Hu, IEEE Electron Device Lett., 20, 409 (1999).
[10] L. Dori, A. Acovic, D. J. Dimaria, and C. H. Hsu, IEEE Electron Device Lett., 14, 283 (1993).
[11] M. Rosmeulen, E. Sleeckx, and K. D. Meyer, IEEE Int. Electron Devices Meeting Tech. Dig., 189 (2002).
[12] S. Wolf, Silicon Processing For The VLSI Era, vol. 1, 2nd edition, Lattice Press, Sunset Beach, California, 706 (1999).
[13] T. C. Chang, S. T. Yan, P. T. Liu, F. M. Yang, S. M. Sze, Appl. Phys. Lett., to be published on April (2004).

Chapter 5
[1] D. Kruangam et al., Visible light a-SiC multilayered thin film LED, in Extended Abstr. 18th Conf. Solid State Devices and Mater. 1986, pp. 683-686
[2] D. Kruangam, M. Deguchi, Carrier injectiom mechanism in an a-SiC P-I-N junction thin film LED, IEEE Trans. Electron Devices, vol.35, pp.957-965, 1988
[3] Nerng-Fu Shin, Jyh-Young Chen, Tean-Sen Jen, Jyh-Wong Hong and Chun-Yen Chang, IEEE Electron device letters, VOL. 14, NO.9 September 1993
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.28.113
論文開放下載的時間是 校外不公開

Your IP address is 3.141.28.113
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code