Responsive image
博碩士論文 etd-0708108-175248 詳細資訊
Title page for etd-0708108-175248
論文名稱
Title
鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討
Manufacturing and Mechanical Properties of AL/APC-2 Nanocomposite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-18
繳交日期
Date of Submission
2008-07-08
關鍵字
Keywords
奈米複材積層板、疲勞、鋁合金、高溫
elevated temperature, nanocomposite laminate, Aluminum alloy, fatigue, APC-2
統計
Statistics
本論文已被瀏覽 5669 次,被下載 2566
The thesis/dissertation has been browsed 5669 times, has been downloaded 2566 times.
中文摘要
本文旨在研製異向性鋁合金碳纖維奈米複材積層板與探討在不同環境溫度下的機械性質,積層板是由二層0.55 mm碳纖維/聚醚醚酮預浸布與三層0.5 mm 鋁合金所構成。在積層板製作過程中,首先在預浸布表面均勻塗佈SiO2奈米微粒,並依十字疊[0/90]s與類似均向疊[0/45/90/-45]兩種疊序堆疊;為了使鋁合金與預浸布產生良好黏結,鋁合金是以鉻酸陽極法進行表面處理,然後以修正隔膜成型法進行固化成型,最後完成製作過程。拉伸與疲勞測試是以MTS 810材料測試試驗機來進行,並以MTS 651環境控制箱來保持特定測試溫度,如RT、75°C、100°C、125°C與150°C。
在靜態拉伸測試中可以得到十字疊與類似均向疊奈米複材積層板的極限強度與縱向勁度等機械性質,並依所得的試驗數據結果,在該溫度下繪製應力應變關係圖;在疲勞測試中,所採用的負載形式為拉伸-拉伸,應力比為0.1,頻率為5Hz,而負載波型為正弦波型,並以負荷控制作為控制模式,最後將疲勞實驗所得數據在不同環境溫度參數下繪製成無因次化應力與疲勞振次關係圖;此外為了觀測試片破斷面,以使用掃瞄式電子顯微鏡來做觀察。
在綜合所有實驗結果後,可以獲致幾點結論:首先,在應變約為0.1%附近斜率發生了改變,此種現象使得依混合理論所計算出之縱向勁度理論值與拉伸實驗值呈現不小誤差;第二,鋁合金/十字疊試片抗疲勞性質比鋁合金/類似均向疊試片差;第三,兩種疊序的奈米複材積層板,其極限應力在環境溫度下150°C為最低;第四,鋁合金/類似均向疊試片在抵抗溫度效應的能力較優;最後,表面處理以採用鉻酸陽極法的奈米複材積層板試片,其機械性能優於化學蝕刻法。
Abstract
The thesis is to fabricate Al/APC-2 hybrid nanocomposite laminates and investigate their mechanical properties at elevated temperature. The prepregs of Carbon /PEEK were stacked into cross-ply [0/90]s and quasi-isotropic [0/45/90/-45] laminates spread uniformly with nanoparticles SiO2. The sheet surface was treated by chromic acid anodic method to achieve perfectly bonding with matrix PEEK. The prepregs were sandwiched with the Al alloy sheets. The modified diaphragm curing process was adopted to produce Al/APC-2 hybrid nanocomposite laminates. The hybrid nanocomposite laminates were a five-layer composite with two 0.55 mm thick Carbon/PEEK layers sandwiched by three 0.5 mm thick 2024-T3 Aluminum alloy sheets. The MTS 810 material testing machine was used to conduct the tension and fatigue tests. In addition, the MTS 651 environmental chamber was installed to control and keep the specific testing temperature, which was room temperature, 75°C, 100°C, 125°C and 150°C.
The mechanical proper¬ties, such as ultimate tensile strength and longitudinal stiffness of hybrid cross-ply and quasi-isotropic nanocomposite laminates, were obtained from the static tensile test, and the stress-strain diagrams were plotted in the corresponding temperature. The constant stress amplitude tension-tension cyclic tests were carried out by using load-control mode at a sinusoidal loading with frequency of 5Hz and stress ratio R=0.1. The received fatigue data were plotted in normalized S-N curves at variously elevated temperature. In order to observe the failure mechanism of samples, the scanning electron microscope was used.
From the summarized results, some conclusions were made. First, the slope changed at strain=0.1% in the stress-strain diagram, and led to a noticeable error between the experimental data and ones calculated according to Rule of Mixtures. Second, the Al/APC-2 cross-ply nanocomposite laminates were less resistant to fatigue than quasi-isotropic. Third, the ultimate tensile strength of both hybrid composite laminates was the lowest at 150°C. Fourth, the Al/APC-2 quasi-isotropic nanocomposite laminates were more resistant to the temperature effect. Finally, The mechanical proper¬ties were better for the surface treated by chromic acid anodic method than chemical etching.
目次 Table of Contents
目錄 I
表目錄 III
圖目錄 Ⅴ
摘要 Ⅷ
英文摘要 Ⅸ
第一章 續論 1
1-1 前言 1
1-2 材料簡介 1
1-2-1 複合材料概述 1
1-2-2 奈米材料性質簡介 2
1-2-3 奈米複合材料簡介 3
1-3 研究方向 4
1-4 文獻回顧 5
1-5 組織章節 7
第二章 實驗工作 8
2-1 實驗材料簡介 8
2-1-1 鋁合金2024-T3材料性質簡介 8
2-1-2 SiO2奈米微粒與APC-2簡介 8
2-2 儀器設備 8
2-3 鋁合金奈米複材積層板之製程 9
2-3-1 熱壓前之處理過程 9
2-3-2 熱壓製程 11
2-4 試片製作與分組 12
2-5 拉伸與疲勞實驗 12
2-6 掃瞄式電子顯微鏡 13
第三章 實驗結果 21
3-1 靜態拉伸實驗 21
3-2 疲勞實驗 22
3-3 鋁合金表面處理 23
3-4 試片斷面觀察 23
第四章 分析與討論 54
4-1 奈米複材積層板機械性能探討 54
4-1-1 混合理論 54
4-1-2 極限強度實驗值與混合理論比較 55
4-1-3 縱向勁度曲線擬合值與混合理論比較 55
4-1-4 疲勞性質探討 57
4-2 溫度效應 57
4-3 破壞模式之探討 58
4-3-1 破壞過程 58
4-3-2 破壞模式探討 58
4-4 表面處理探討 61
第五章 結論 68
參考文獻 69
參考文獻 References
1. 周森, ”複合材料-奈米、生物科技”, 全威出版社, 2002年.
2. Marissen, R., “Flight Simulation Behaviour of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, 1984, pp.261-277.
3. Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H., “Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., 1984, pp. 1081-1089.
4. Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., 1987, pp. 1271-1279.
5. Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, COMPOSITES, Vol. 22, No. 2, 1991, pp. 135-141.
6. Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3, 1989, pp.361-377.
7. Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum ( ARALL ) Laminates with Fatigue Cracks”, Polym. Composites, Vol. 10, No. 5, 1989, pp. 322-327.
8. Lin, C. T, Kao, P. W, Jen, M. -H.R., “Thermal Residual Strains in Carbon Fiber-Reinforced Aluminum Laminates,” COMPOSITES, Vol.25, No.4, 1994, pp. 303-307.
9. Grubbs, Charles A., 2002, “Anodizing of Aluminum”, Metal Finishing, Vol.100, pp.463-478.
10. Thrall, Edward W., and Shannon, Raymond W., 1985, “Adhesive bonding of aluminum alloys”, Marcel Dekker Co. Inc.
11. Pinner, R., and Sheasby, P.G., 1987, “The Surface Treatment and Finishing of Aluminum and its Alloys”, Metals Park, Ohio : ASM International.
12. Diao, X., Lin, T., and Mai, Y. W., 1997,“Fatigue Behavior of CF/ PEEK Composites Kaminates Made From Commingled Prepreg. Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749-755.
13. Gardin, C. H., and Frenot, M. C. L., 1992, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites, Vol.23, pp.109-116.
14. Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23-29.
15. Rao, K.T.V., and Ritchie, R.O.,1998, “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167-4180.
16. Xia,K., and Langdon, T.G., 1996, “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487-5492.
17. Telreja, R., 1987, Fatigue of Composite Materials, Technomic Publishing Co. Inc.
18. Hwang, W., and Han, K.S., 1986, “Fatigue of Composite-Fatigue Modulus Concept and Life Prediction”, Journal of Composite Materials, Vol.20, pp.154-165.
19. Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, “A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343-351.
20. Miyano, Y., and Nakada, M., 1997, “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619-638.
21. Schaff, J. R., 1997, “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158-181.
22. Song, D. Y., 1997, “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329-335.
23. Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87-102.
24. Knut, O. R., and Andreas, T. E., 1996, “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A, pp.485-491.
25. Yang, F. S., Lin, C. T., Kao, P. W. and Su, A. C. ‘Properties of carbon fiber reinforced aluminum laminates’ China Steel Technical Report 4 ,1990, pp.180-186.
26. 林秋堂, 1994,“碳纖強化鋁合金夾層板之疲勞裂縫成長機構”, 國立中山大學材料科學所博士論文.
27. 李傳華, 1998,“複合材料積層板疲勞強度與壽命預測及層間應力分析”, 國立中山大學機械所博士論文.
28. 彭聖森, 1999, “ 碳纖維/聚醚醚酮複合材料積層板溫度效應對疲勞破壞行為之影響 ”, 國立中山大學機械所碩士論文.
29. 張熙超, 1999,“ 碳纖維/聚醚醚酮複合材料積層板鑽孔及溫度效應之破壞機制與機械性質分析 ”, 國立中山大學機械所碩士論文.
30. 曾育鍾, 2000, ” 中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討 ”, 國立中山大學機械所碩士論文.
31. 蔡健民, 2003, ” 以奈米粉體強化之高性能高分子PEEK製程與機械性質分析 ”, 國立中山大學材料科學所碩士論文.
32. 吳俊憲, 2004, “ 石墨纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討 ”, 國立中山大學機電所碩士論文.
33. 黃育信,2005,“奈米複材積層板承受高溫疲勞作用其機械性能之探討”, 國立中山大學機電所碩士論文.
34. 李秉原, 2006, ”鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.
35. 邱岩諺, 2007, ”中央鑽孔鎂合金/碳纖維/聚醚醚酮複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code