Responsive image
博碩士論文 etd-0708108-181854 詳細資訊
Title page for etd-0708108-181854
論文名稱
Title
SAC405錫球經迴焊過後的幾何外型預測
Geometric Shape Prediction for a Sn/4.0Ag/0.5Cu (SAC405) Solder Joint After Reflows
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-18
繳交日期
Date of Submission
2008-07-08
關鍵字
Keywords
封裝體、外型、迴焊、錫球接點
package, reflow, shape, solder joint
統計
Statistics
本論文已被瀏覽 5633 次,被下載 20
The thesis/dissertation has been browsed 5633 times, has been downloaded 20 times.
中文摘要
錫球接點在迴焊後的幾何外形在今許多相關的發展與應用中漸漸的受到重視。藉由能量法與解析法的應用,不同錫球接點模型的建立被廣泛的應用在錫球接點的外型設計上,然而最重要的是找出一套較為合適的方法以導入實際應用。
本文中,目的在於設定一系列的實驗以得到不同幾何參數設定下的錫球型外型,並配合Surface Evolver數值模擬軟體計算得到的模型做比較,而不同的幾何參數設定,如錫球接點的體積,上方承受的荷重,錫球熔融時的表面張力,及重力等對於錫球接點的外型造成的影響也一併討論。
針對SAC405錫球共設計兩組實驗,一組為觀察不同體積的錫球接點經過一次迴焊的外型變化,另一組則模擬相同體積的錫球在承受封裝體重量下經過二次迴焊後外型變化。實驗結果顯示,採用Surface Evolver數值模擬軟體在經過修正後的條件設定下所建立的錫球接點模型與實際實驗所得到的錫球接點外型相當接近,差異值約在-3%~6.5%,可謂已經達到可接受的差異值範圍之內。
本研究也將利用Surface Evolver數值模擬軟體所建立的錫球接點模型導入ANSYS數值模擬軟體中,進行溫度循環疲勞壽命分析,藉以比較不同荷重下所預測得到的錫球接點模型對於封裝體可靠度的影響,結果說明了細長的錫球外型擁有較佳的溫度疲勞壽命。
Abstract
The fatigue-induced solder joint failure of surface mounted electronic devices has become one of the most critical reliability issues in electronic packaging industry. Prediction of the shape of solder joints has drawn special attention to the related development and engineering applications. Numerous solder joint models, based on energy minimization principle and analytical methods, have been proposed and developed. The methods are extensively utilized to the shape design of solder joint. However, it is important to find a suitable method to real applications. Herein, a series of experiments with different geometric parameters of SAC405 solder joints were carried out and the results were compared with the prediction by Surface Evolver Program. The changes of geometric shape with respect to different parameters of solder joint were also discussed. The influence of the geometric parameters, such as volume of solder joint, package weight, solder surface tension, and gravity force to the shape of solder joint were investigated.
Two experiments with SAC405 solder balls were carried out. One is to observe the different reflowed geometry shape of solder balls with various volumes, and another is to observe the different reflowed geometry shape of solder balls with various loadings on them. The results show that the models made by Surface Evolver program are very similar to the real shapes observed by experiments, and the differences are between -3% ~ 6.5%. Thus, the results show that the predicted shapes are satisfactorily suitable.
Finally, the predicted models by Surface Evolver program were also put into the ANSYS program, and preceded the fatigue life prediction due to thermal cycling tests. The comparison of the effect on fatigue life with respect to different geometry shapes is illustrated. The results show the shape of solder ball due to high loadings is better than that in thermal cycling tests.
目次 Table of Contents
目錄 I
表目錄 IV
圖目錄 V
摘要 VIII
英文摘要 IX
第一章 緒論 1
1-1 前言 1
1-2 封裝簡介 3
1-2-1 BGA簡介 5
1-2-2 Ultra CSP與WLCSP簡介 6
1-3 研究方向 7
1-4 文獻回顧 8
1-5 組織與章節 10
第二章 實驗工作 13
2-1實驗規劃 13
2-2 試片介紹 14
2-3 機台介紹 15
2-4 實驗流程 16
2-5 數據結果分析 18
第三章 Surface Evolver 數值模擬 30
3-1 Surface Evolver 30
3-1-1 最小能量法則 31
3-2 Model建立 33
3-3 模擬條件設定 34
3-4 數值模擬結果分析 34
第四章 實驗結果與數值模擬比較 43
4-1 實驗結果與數值模擬結果 43
4-2 數值模擬與實驗的條件設定比較與分析 44
第五章 數值分析 53
5-1 線性與非線性理論分析 53
5-2 線性分析理論 54
5-3 非線性分析理論 55
5-3-1 隨動硬化塑性和等向硬化塑性 56
5-3-2 潛變 56
5-4 數值模擬基本假設 57
5-5 溫度循環疲勞測試 57
5-6 建立模型與尺寸設定 59
5-7 結果與分析 59
第六章 結論 70
參考文獻 72
參考文獻 References
[1] Keith Newman, “BGA Brittle Fracture-Alternative Solder Joint Integrity Test Methods,” Electronic Components and Technology Conference, pp. 1194-1201, 2005.
[2] Yi-Shao Lai, Ping-Fong Yang, Chang-Lin Yeh, Heng-Yu Kung, “Board-Level Reliability of Chip-Scale Packages Subjected to JEDEC Drop Test Condition,” In Proceedings of IMAPS Taiwan 2005 International Technical Symposium, pp. 50-55, 2005.
[3] Dave Reiff and Edwin Bradley, “A Novel Mechanical Shock Test Method to Evaluate Lead-Free BGA Solder Joint Reliability,” Electronic Components and Technology Conference, pp. 1519-1525, 2005.
[4] Yi-Shao Lai*, Hsiao-Chuan Chang, Chang-Lin Yeh, “Evaluation of Solder Joint Strength Using Ball Impact Test, “In Proceedings of IMAPS Taiwan 2006 International Technical Symposium, pp. 208-214, Taipei, Taiwan.
[5] 鍾文仁、陳佑任,IC封裝製程與CAE應用,全華科技圖書股份有限公司,2005。
[6] J. H. Lau, “Ball Grid Array Technology,” McGraw-Hill, 1995.
[7] J. H. Lau, C. P. Wong, J. L. Prince, Wataru Nakayama, “Electronic Packaging: Design, Materials, Process, and Reliability,” McGraw-Hill, 1998.
[8] H. K. Charles, Jr., and G. V. Clatterbaugh, 1990, ‘‘Solder Joint Reliability—Design Implications from Finite Element Modeling and Experimental Testing,’’ASME J. Electron. Packag., 112, No. 2, pp. 135–146.
[9] J. H. Lau, and D. W. Rice, 1986, ‘‘Effects of Interconnection Geometry on Mechanical Responses of Surface Mount Component,’’ Proc., 2nd IEEE International Electronic Manufacturing Technology Symposium, San Francisco, CA, pp. 205–217.
[10] F. J. Liotine, 1988, ‘‘The Importance of Solder Volume and Its Control in Reducing Solder Joint Fatigue ~For Large TCE Differences!,’’ Surface Mount ’88, SMTA.
[11] A. J. Rafanelli, 1989, ‘‘Solder Fillet Height Criteria for Surface Mounted Chip Components,’’ ASME J. Electron. Packag., 111, No. 4, pp. 299–302.
[12] M. K. Shah, 1990, ‘‘Analysis of Parameters Influencing Stresses in the Solder Joint of Leadless Chip Capacitors,’’ ASME J. Electron. Packag., 112, No. 2, pp. 147–153.
[13] L. S. Goldmann, 1969, ‘‘Geometric Optimization of Controlled Collapse Interconnections,’’ J. IBM Res. Develop, 13, pp. 251–265.
[14] M. Ohshima, A. Kenmotsu, and I. Ishi, 1982, ‘‘Optimization of Micro-Solder Reflow Bonding for the LSI Flip Chip,’’ Proc. 2nd Annual Intl. Electronics Packaging Soc. Conf., pp. 481–488.
[15] M. Ohshima, R. Satoh, K. Hirota, and I. Ishi, 1985, ‘‘New MicroSoldering Technology and Its Application to VLSI,’’ Proc. 1st IEEE CHMT Symposium, CHMT Tokyo ’84, published in Aug., pp. 165–170.
[16] R. Satoh, M. Ohshima, H. Komura, I. Ishi, and K. Serizawa, 1983, ‘‘Development of a New Micro-Solder Bonding Method of VLSIs,’’ Proc. 3rd Annual Intl. Electronics Packaging Soc. Conf., pp. 455–461.
[17] R. Satoh, M. Ohshima, K. Hirota, and I. Ishi, 1987, ‘‘Optimum Bonding Shape Control of Micro-Solder Joint of IC and LSI,’’ J. Jpn. Inst. Met., 51, No. 6, pp. 553–560.
[18] R. H. Katyl, and W. T. Pimbley, 1992, ‘‘Shape and Force Relationships for Molten Axisymmetric Solder Connections,’’ ASME J. Electron. Packag., 114, No. 3, pp. 336–341.
[19] B. Yost, J. McGroarty, P. Borgesen, and C. Y. Li, 1993, ‘‘Shape of a Nonaxisymmetric Liquid Solder Drop Constrained by Parallel Plates,’’ IEEE Trans. Compon., Hybrids, Manuf. Technol., 16, pp. 523–526.
[20] K. A. Brakke, 1996, Surface Evolver Manual, Version 2.01. The Geometry Center. University of Minnesota.
[21] L. M. Racz, and J. Szekely, 1993, ‘‘Determination of Equilibrium Shapes and Optimal Volume of Solder Droplets in the Assembly of Surface Mounted Integrated Circuits,’’ Suri Kagaku, 33, No. 2, pp. 336–342.
[22] T. J. Singler, X. Zhang, and K. A. Brakke, 1996, ‘‘Computer Simulation of Solder Bridging Phenomena,’’ ASME J. Electron. Packag., 118, No. 3, pp. 122–126.
[23] K. N. Chiang, C. M. Liu, ”Analysis of Reflow Geometry for The Hybrid-Pad-Shapes System of Ball Grid Array Packages,” Department of Power Mechanical Engineering, National Tsing Hua University
[24] K. N. Chiang, W. L. Chen, 1998, "Electronic Packaging Reflow Shapes Prediction for the Solder Mask Defined Ball Grid Array", ASME Journal of Electronic Packaging, Vol. 120, pp. 175-178.
[25] 李業松,”上板級封裝體之掉落及溫度循環疲勞實驗與分析”,國立中山大學機械與機電工程研究所碩士論文,2007。
[26] 許宏達、葉冠麟、蔡靜宜、謝雅玉、葉昶麟、賴逸少,日月光集團研發中心核心實驗室,” 電子構裝元件載重於上板過程對錫球形變的關聯性探討”,中華民國力學學會第三十一屆全國力學會議 ,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.20.57
論文開放下載的時間是 校外不公開

Your IP address is 18.223.20.57
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code