Responsive image
博碩士論文 etd-0708110-141641 詳細資訊
Title page for etd-0708110-141641
論文名稱
Title
探討SMAD4基因訊息網絡抑制胰臟癌轉移與抗藥性能力
Identification of target genes of SMAD4 signaling network inhibit pancreatic tumor metastasis and chemoresistance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-24
繳交日期
Date of Submission
2010-07-08
關鍵字
Keywords
胰臟腺癌、血管新生
TGF, PDAC, HIF-1
統計
Statistics
本論文已被瀏覽 5779 次,被下載 1265
The thesis/dissertation has been browsed 5779 times, has been downloaded 1265 times.
中文摘要
胰臟腺癌(PDAC)是最棘手的癌症之一,其發生率近乎等於死亡率。儘管已經有相當多的研究報導,但至今仍無有效的治療方法來減少此疾病的致死率。大部份的胰臟腺癌是經由 K-Ras 致癌基因的活化和 Ink4a、p53-Arf 路徑被抑制等變異所產生,SMAD4 基因(TGF-β訊號主要調控者)去活化變異存在於大約 55% 的胰臟腺癌病例中。因此,為了在癌症生物學裡確定 SMAD4 基因對胰臟癌演進的影響機制,我們設計一系列實驗,用胰臟癌細胞株模組去剖析 SMAD4 缺失對 PDAC 細胞株的影響,和探討去活化 SMAD4 蛋白後與低氧壓/ TGF-β 的相互作用下對胰臟癌的轉移能力及抗藥性的調控作用。實驗結果顯示,將 SMAD4 重新送回 PDAC 細胞株中可對 HIF-1α、VEGF、FGF10、FGFR2 等影響癌細胞生存的基因有明顯的抑制其表達量,也可以看出 SMAD4 蛋白有抑制癌細胞轉移、抗藥性和血管新生的能力,我們推測是 SMAD4 抑制了那些生存基因的表達所造成的效果。這些詳細的調控機制目前還不明確,所以將來延續的研究目標,將朝著解開 SMAD4 訊息傳遞的路徑與各種下游相關蛋白之間的關連性為主。
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most insidious forms of cancer whose incidence nearly equals its death rate. Despite extensive research studies, no effective therapeutic approaches for diminishing the morbidity associated with this disease are available. PDAC is characterized by activating Kras mutations and inactivation of Ink4a and the p53-Arf pathway in virtually all cases, while SMAD4—a central regulator of Transforming growth factor-beta (TGF-β) signaling—is inactivated in 55% of PDAC. Our overall goal is to understand how perturbations in the inactivation of SMAD4 pathway contribute to the late stages of PDAC pathogenesis, and to elucidate the role of SMAD4 inactivation on the conversion of a benign form of the cancer to a more aggressive metastatic form. To address this important topic in cancer biology, we have devised a strategy to develop model cell lines to dissect the role of SMAD4 defect in PDAC cell lines and the potential synergistic effects of hypoxia and/or TGF-β1 upon SMAD4 inactivation in their metastatic properties. Experiment results showed SMAD4 restored in PDAC model cell lines were down regulate HIF-1α, VEGF, FGF10 and FGFR2 genes expression level, and also inhibited migration, chemoresistance and angiogenesis of cancer cells. We hypothesize that these effects are due to SMAD4 suppresses some cancer genes in PDAC. Further detailed investigations are also needed to fully elucidate the detail mechanisms for our findings here therefore, the future works of this study will go step on looking for those important downstream effect genes regulated by Smad4 protein in PDAC cells and try to find out the connection of all the dependence proteins.
目次 Table of Contents
Abstract in Chinese ------------------------------------------------- 1
Abstract in English -------------------------------------------------- 2
Abbreviations --------------------------------------------------------- 4
Introduction ------------------------------------------------------------ 6
Specific Aim --------------------------------------------------------- 15
Materials and Methods --------------------------------------------- 16
Results ---------------------------------------------------------------- 24
Discussion ------------------------------------------------------------ 29
Figures and Tables -------------------------------------------------- 35
References ------------------------------------------------------------ 51
參考文獻 References
Adams, J. M., Difazio, L. T., Rolandelli, R. H., Lujan, J. J., Hasko, G., Csoka, B., Selmeczy, Z., and Nemeth, Z. H. (2009). HIF-1: a key mediator in hypoxia. Acta Physiol Hung 96, 19-28.
Alazzouzi, H., Alhopuro, P., Salovaara, R., Sammalkorpi, H., Jarvinen, H., Mecklin, J. P., Hemminki, A., Schwartz, S., Jr., Aaltonen, L. A., and Arango, D. (2005). SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 11, 2606-2611.
Bardeesy, N., Cheng, K. H., Berger, J. H., Chu, G. C., Pahler, J., Olson, P., Hezel, A. F., Horner, J., Lauwers, G. Y., Hanahan, D., and DePinho, R. A. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development 20, 3130-3146.
Bardeesy, N., and DePinho, R. A. (2002). Pancreatic cancer biology and genetics. Nat Rev Cancer 2, 897-909.
Bartsch, D., Barth, P., Bastian, D., Ramaswamy, A., Gerdes, B., Chaloupka, B., Deiss, Y., Simon, B., and Schudy, A. (1999). Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas. Cancer Lett 139, 43-49.
Bierie, B., and Moses, H. L. (2006). TGF-β and cancer. Cytokine Growth Factor Rev 17, 29-40.
Bottcher, R. T., and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26, 63-77.
Cao, R., Brakenhielm, E., Pawliuk, R., Wariaro, D., Post, M. J., Wahlberg, E., Leboulch, P., and Cao, Y. (2003). Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9, 604-613.
Cheng, K. H., Ponte, J. F., and Thiagalingam, S. (2004). Elucidation of epigenetic inactivation of SMAD8 in cancer using targeted expressed gene display. Cancer Res 64, 1639-1646.
Duda, D. G., Sunamura, M., Lefter, L. P., Furukawa, T., Yokoyama, T., Yatsuoka, T., Abe, T., Inoue, H., Motoi, F., Egawa, S., et al. (2003). Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 22, 6857-6864.
Fink, S. P., Swinler, S. E., Lutterbaugh, J. D., Massague, J., Thiagalingam, S., Kinzler, K. W., Vogelstein, B., Willson, J. K., and Markowitz, S. (2001). Transforming growth factor-beta-induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res 61, 256-260.
Hansel, D. E., Kern, S. E., and Hruban, R. H. (2003). Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 4, 237-256.
Hill, C. S. (2009). Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19, 36-46.
Hruban, R. H., Iacobuzio-Donahue, C., Wilentz, R. E., Goggins, M., and Kern, S. E. (2001). Molecular pathology of pancreatic cancer. Cancer J 7, 251-258.
Ijichi, H. (2004). TGF-β signaling pathway in pancreatic cancer cells. Nippon Rinsho 62, 1241-1248.
Imamura, T., Kanai, F., Kawakami, T., Amarsanaa, J., Ijichi, H., Hoshida, Y., Tanaka, Y., Ikenoue, T., Tateishi, K., Kawabe, T. (2004). Proteomic analysis of the TGF-β signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochem Biophys Res Commun 318, 289-296.
Isaksson-Mettavainio, M., Palmqvist, R., Forssell, J., Stenling, R., and Oberg, A. (2006). SMAD4/DPC4 expression and prognosis in human colorectal cancer. Anticancer Res 26, 507-510.
Ishiwata, T., Naito, Z., Lu, Y. P., Kawahara, K., Fujii, T., Kawamoto, Y., Teduka, K., and Sugisaki, Y. (2002). Differential distribution of fibroblast growth factor FGF-7 and FGF-10 in L-arginine-induced acute pancreatitis. Exp Mol Pathol 73, 181-190.
Kierszenbaum, A. L. (2007). Histology and cell biology. Mosby Inc.
Kojima, K., Vickers, S. M., Adsay, N. V., Jhala, N. C., Kim, H. G., Schoeb, T. R., Grizzle, W. E., and Klug, C. A. (2007). Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67, 8121-8130.
Krzemien, S., and Knapczyk, P. (2005). Current review on the role of transforming growth factor beta (TGF-β) in some pathological disorders. Wiad Lek 58, 536-539.
Lin, R. S., and Lee, W. C. (1992). Mortality trends of pancreatic cancer: an affluent type of cancer in Taiwan. J Formos Med Assoc 91, 1148-1153.
Liu, F., Pouponnot, C., and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGF-β-inducible transcriptional complexes. Genes Dev 11, 3157-3167.
Maitra, A., Kern, S. E., and Hruban, R. H. (2006). Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20, 211-226.
Martin H. Floch, e. a. (2005). Netter's Gastroenterology. Medi media Inc.
Massague, J. (1998). TGF-β signal transduction. Annu Rev Biochem 67, 753-791.
Massague, J., and Chen, Y. G. (2000). Controlling TGF-β signaling. Genes Dev 14, 627-644.
Medinger, M., Fischer, N., and Tzankov, A. (2010). Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol 2010, 729725.
Micheal H. Ross, e. a. (2003). Histology. Lippincott Williams and Wilkins.
Miyaki, M., and Kuroki, T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 306, 799-804.
Muller, N., Reinacher-Schick, A., Baldus, S., van Hengel, J., Berx, G., Baar, A., van Roy, F., Schmiegel, W., and Schwarte-Waldhoff, I. (2002). Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene 21, 6049-6058.
Niederhuber, J. E., Brennan, M. F., and Menck, H. R. (1995). The National Cancer Data Base report on pancreatic cancer. Cancer 76, 1671-1677.
Pourgholami, M. H., Cai, Z. Y., Badar, S., Wangoo, K., Poruchnsky, M. S., and Morris, D. L. (2010). Potent inhibition of tumoral hypoxia-inducible factor 1 by albendazole. BMC Cancer 10, 143.
Radek, K. A., Taylor, K. R., and Gallo, R. L. (2009). FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen 17, 118-126.
Ruddon, R. W. (2005). Cancer Biology. OXFORD university press.
Schwarte-Waldhoff, I., Volpert, O. V., Bouck, N. P., Sipos, B., Hahn, S. A., Klein-Scory, S., Luttges, J., Kloppel, G., Graeven, U., Eilert-Micus, C., et al. (2000). Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci U S A 97, 9624-9629.
Serrati, S., Margheri, F., Pucci, M., Cantelmo, A. R., Cammarota, R., Dotor, J., Borras-Cuesta, F., Fibbi, G., Albini, A., and Del Rosso, M. (2009). TGF-β1 antagonistic peptides inhibit TGF-β1-dependent angiogenesis. Biochem Pharmacol 77, 813-825.
Shen, W., Tao, G. Q., Li, D. C., Zhu, X. G., Bai, X., and Cai, B. (2008). Inhibition of pancreatic carcinoma cell growth in vitro by DPC4 gene transfection. World J Gastroenterol 14, 6254-6260.
Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845.
Singh, I. (2005). Atlas of Human Anatomy. Anshan Ltd.
Stathis, A., and Moore, M. J. (2010). Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7, 163-172.
Stolze, I., Berchner-Pfannschmidt, U., Freitag, P., Wotzlaw, C., Rossler, J., Frede, S., Acker, H., and Fandrey, J. (2002). Hypoxia-inducible erythropoietin gene expression in human neuroblastoma cells. Blood 100, 2623-2628.
Wrana, J. L., and Attisano, L. (2000). The Smad pathway. Cytokine Growth Factor Rev 11, 5-13.
Zhao, S., Ammanamanchi, S., Brattain, M., Cao, L., Thangasamy, A., Wang, J., and Freeman, J. W. (2008). Smad4-dependent TGF-β signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells. J Biol Chem 283, 11293-11301.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code