Responsive image
博碩士論文 etd-0708110-183457 詳細資訊
Title page for etd-0708110-183457
論文名稱
Title
平行板流道之散熱片在層流的對流熱傳數值模擬分析
Numerical analysis of laminar convective heat transfer of ribs in the parallel-plate channel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
187
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-22
繳交日期
Date of Submission
2010-07-08
關鍵字
Keywords
混合對流、強制對流、散熱片、流道、最佳化形狀因子
Channel, Mixed convection, Forced convection, Rib, Optimum aspect ratio
統計
Statistics
本論文已被瀏覽 5770 次,被下載 838
The thesis/dissertation has been browsed 5770 times, has been downloaded 838 times.
中文摘要
本研究是以數值模擬方式分析平行板流道之散熱片在層流情況下的對流熱傳效果。不僅對於流道壁上之單一散熱片在強制對流情況下與不同傾斜角之混合、自然對流情況下加以分析,亦對平行流道兩壁的散熱片排列成一直線或交錯形式之對流情況下進行探討。

在分析與計算之過程中,採用控制體積計算方法及非均勻網格點方式,將系統之統御方程式轉置成流線函數、渦度方程式與能量方程式進行解析與模擬計算。首先,討論關於流體雷諾數、散熱片與流體之熱傳導性能的比值、流道入口距離、散熱片之間距等變數的影響。進而,探討單一散熱片與散熱片列之最佳化的形狀比例與雷諾數、散熱片與流體熱傳導性能之比值,以及散熱片之剖面積的關聯性。更進一步,分析在平行板流道中,不同強度之浮力以及流道傾斜角變化的影響。

結果顯示,固定散熱片剖面積之條件下,在強制對流與混合對流情況時,代表具最大散熱性能之散熱片最佳化形狀因子隨雷諾數之提升而增大,但隨散熱片與流體熱傳導性能之比值降低而減小。在強制對流下,散熱片列之最佳化形狀因子隨散熱片間距變大而增加,但隨入口到第一散熱片之距離變長而減小。然後,提出散熱片的最佳化形狀因子與雷諾數、傳導性能比值或散熱片數目之關係式。

最後,在混合對流中,浮力效應之增強,有助於提升散熱片的熱傳性能。單一散熱片與交錯式散熱片列之最佳化形狀因子不僅隨流道傾斜角增加而增大,且隨浮力強度增加而增大。
Abstract
Numerical study of laminar convective cooling of ribs in a parallel plate channel is investigated. Single rib mounted on one channel wall in forced, mixed and free convection is analyzed. Furthermore, the series ribs array with in-line and staggered mounted on channel walls are considered.

Through the use of a stream function vorticity transformation, solution of the transformed governing equations for the system is obtained using the control volume method with non-uniform grid. The effects of the Reynolds number, thermal conductivity ratio of rib to fluid and rib’s profile area on heat transfer rate of single rib and rib array are presented. In addition, the effects of the length from inlet to the first rib and the space between ribs for rib array are carried out. A correlation for single and rib array in forced convection is presented to estimate the optimum aspect ratio of rib with various Reynolds number, thermal conductivity ratio of rib to fluid, rib’s profile area. Furthermore, the results of different Gr/Re2 and various channel inclination angle in mixed convection are also examined numerically.

The results indicate that both in forced and mixed convection, the optimum aspect ratio of a rib corresponding to the rib with maximum heat transfer rate increases with increasing Re but decreases with K for a fixed rib profile area. In forced convection the optimum aspect ratio of rib array increases with rib’s space but decreases with the length from inlet to the first rib of channel. Then, numerical correlations to predict the optimum aspect ratio of single rib and rib array are developed for fixed rib’s area with various Re, K and rib number. In mixed convection, the optimum aspect ratios of single rib and staggered rib array increase with not only the inclination angle but also Gr/Re2.
目次 Table of Contents
Contents

List of Tables………………………………..……..…....……..…………..…...v
List of Figures……………………………….……..………………….………vi
摘要 …………………………………….…………..…………………….…xi
Abstract……………………….....…………………..……...…………………xii
Nomenclature………………………….………..………………..…………xiii

Chapter 1 Introduction………………………………………………………1
1.1 Numerical in forced convection…………..…………………………….2
1.2 Numerical in mixed convection…………..………..…………….……11
1.3 Experimental in convection ……………..…..…………………...…...23

Chapter 2 Analysis and Formulation…..……….…….……………………31
2.1 Analysis ………………………….…………..…………………………..31
2.1.1 Forced convection with single rib .…………...………..…….……31
2.1.2 Forced convection with rib array .………...………………………32
2.1.3 Mixed convection with single rib .…………...…………………….32
2.1.4 Mixed convection with rib array .…..………...…………………….33

2.2 Governing equations…………………………………………………..33
2.2.1 In forced convection .…………...………..………….….………..33
2.2.2 In mixed convection.…………...…….…….…………..…………35

2.3 Boundary conditions…………..……...…………………….…....……36
2.3.1 Channel with single rib.…………….……………....…...…....36
2.3.2 Channel with rib array.……………...…………..……..….…37

2.4 Evaluations of heat transfer and pressure drop.…………..……………...39
Chapter 3 Numerical Method………...…….….…………………………...43
3.1 The Discretization of the convection-diffusion equation.……….....…..43
3.1.1 Vorticity transport equation.………...…...………………...…….…..45
3.1.2 Stream function.…………...………………………………….….…..46
3.1.3 Energy equation of the flow..………………………………………..46
3.1.4 Energy equation of the solid rib.…………...….………………….....47
3.1.5 Relaxation factor.…………...………………………………………..48

3.2 Numerical solution procedures.……...…...…………………………...49
3.2.1 Forced convection …………..……..………………...….………….49
3.2.2 Mixed convection ………………….…………...….…….…....……50

3.3 Validation………..........................................................………….........…52
3.3.1 Forced convection with single rib……..…………………...………52
3.3.2 Forced convection in a channel with rib array ………………….....52
3.3.3 Mixed convection in a channel with single rib …………………….53
3.3.4 Mixed convection in various inclined angle channel……......…….53
3.3.5 Experimental data verification……………………………….......…54

3.4 Grid independence ................................................................................ 55
3.4.1 Single rib in forced convection........................................................ 55
3.4.2 Rib array in forced convection…..............................…................…56
3.4.3 Single rib in mixed convection……..............................................…56
3.4.4 Rib array in mixed convection ..............................….................…57

Chapter 4 Results and Discussions……………………………….…………73
4.1 Forced convection with single rib.…………...………….……………..73
4.1.1 Effect of Re………..……......………………………….…………..77
4.1.2 Effect of K ……….…………………..………….……….………..77
4.1.3 Effect of A.……….…………………………………………....……..78
4.1.3 Pressure drop…………...……………..…..……...……….………..78

4.2 Forced convection with in-line rib array ……………..………………..80
4.2.1 Effect of Re …………….…………………………………....……..81
4.2.2 Effect of K…………….....…………………………….……….…..83
4.2.3 Effect of S………...……..……………………………...…………..83
4.2.4 Effect of Li…………….....……………………………..…………..84

4.3 Forced convection with staggered rib array …………..……...………..86
4.3.1 Effect of K…………..…….……….…………….………….……..88
4.3.2 Effect of Re ……………………….…………….…..……………..90
4.3.3 Effect of Li…………..………….….……………..………………..90
4.3.4 Effect of A…………..………………..………….……………….. 91
4.3.5 Comparison of heat transfer and pressure drop……………...…..91

4.4 Mixed convection with single rib …….…….……..……….…………..93
4.4.1 Effect of Gr/Re2..……..………..……………….……….……...…..94
4.4.2 Effect of inclined angle………………...…………………….….....97
4.4.3 Effect of K …………...…………………………………………..97
4.4.4 Effect of A……………………..………...………………..………..97

4.5 Mixed convection staggered rib array…….……………….…………..98
4.5.1 Effect of inclined angle………………...…………………….…...100
4.5.2 Effect of Gr/Re2..…..………..……………….……….……...…..101
4.5.3 Effect of K …………...…………………………………………101

Chapter 5 Conclusions and Recommendations……..…...…….....………151
5.1 Conclusions…………………………..………….………….…………..151
5.2 Recommendations……………………………...…..…….….………...153

Reference………………….…………………….............……….…………154

Publication List ……….…………………….............……….…..……...…169
參考文獻 References
[1] Q.D. Kern, D.A. Kraus, Extended Surface Heat Transfer, McGraw-Hill, New York (1972).
[2] S.V. Patankar, C.H. Liu, E.M. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, Journal of Heat Transfer 99 (1977) 180-186.
[3] R.K. Shah, A.L. London, Laminar flow forced convection in ducts. In: Advances in Heat Transfer, Supplement 1, New York, Academic Press (1978).
[4] E.M. Sparrow, B.R. Baliga, S.V. Patankar, Forced-convection heat transfer from a shrouded fin array with and without tip clearance, ASME Journal of Heat Transfer 100 (1978) 572-579.
[5] R. Karvinen, Natural and forced convection heat transfer from a plate fin, International Journal Heat Mass Transfer Heat Mass Transfer 5 (1981) 881-885.
[6] R. Karvinen, Efficiency of straight fins cooled by natural or forced convection, International Journal Heat Mass Transfer Heat Mass Transfer 26 (1983) 635-638.
[7] B.W. Webb, S. Ramadhyani, Conjugate heat transfer in a channel with staggered ribs, International Journal of Heat Mass Transfer Heat Mass Transfer 28 (1985) 1679-1687.
[8] A.B. Cohen, M. Jelinek, Optimum arrays of longitudinal rectangular fins in convective heat transfer, Heat Transfer Engineering 6 (1985) 68-78.
[9] K.M. Kelkar, S.V. Patankar, Numerical predictions of flow and heat transfer in a parallel plate channel with staggered fins, ASME Journal of Heat Transfer 109 (1987) 25-30.
[10] J. Davalath, Y. Bayazitoglu, Forced convection cooling across rectangular blocks, ASME Journal of Heat Transfer 109 (1987) 321-328.
[11] S.S. Hsieh, D.Y. Huang, Numerical computation of laminar separated forced convection o¬n surface mounted ribs, Numerical Heat Transfer 12 (1987) 335-348.
[12] F. Durst, M. Founti, S. Obi, Experimental and computational investigation of the two-dimensional channel flow over two fences in tandem, Journal of Fluids Engineering 110 (1988) 48-54.
[13] F.P. Incropera, Convection of heat transfer in electronic equipment cooling, Journal of Heat Transfer 110 (1988) 1097-1110.
[14] C.H. Cheng, W.H. Huang, Laminar forced convection flows in horizontal channels with transverse fins placed in entrance regions, Numerical Heat Transfer A 16 (1989) 77-100.
[15] S.S. Hsieh, H.J. Shih, Y.J. Hong, Laminar forced convection from surface-mounted ribs, International Journal of Heat and Mass Transfer 33 (1990)1987-2000.
[16] C.D. Luy, C.H. Cheng, W.H. Huang, Forced convection in parallel channels with a series of mounted on the wall, Applied Energy 39 (1991) 127-144.
[17] C.H. Cheng, W.H. Huang, Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays, International Journal of Heat and Mass Transfer 34 (1991) 2739-2749.
[18] R.M. Manglik, A.E. Bergles, Fully develop laminar heat transfer in circular-segment duct with uniform wall temperature, Numerical Heat Transfer, 26, (1994) 499 - 519.
[19] R.H. Yeh, M. Chang, Optimum longitudinal convective fin arrays, International Communication of Heat and Mass Transfer 22 (1995) 445-460.
[20] R.H. Yeh, Errors in one-dimensional fin optimization problem for convective heat transfer, International Journal of Heat Mass Transfer 39 (1996) 3075-3078.
[21] T.J. Yang, K. Vafai, Convective heating of a heated obstacle in a channel, International Journal of Heat and Mass Transfer 41 (1998) 3131-3148.
[22] T.J .Yang, K. Vafai, Convective flow and heat transfer in a channel containing multiple heated obstacles, International Journal Heat Mass Transfer 41 (1998) 3279-3298.
[23] R.H. Yeh, Optimum finned surfaces with longitudinal rectangular fins, Journal of Enhanced Heat Transfer 8 (2001) 279-289.
[24] T. Adachi, H. Ueara, Correlation between heat transfer and pressure drop in channels with periodically grooved parts, International Journal of Heat and Mass Transfer 44 (2001) 4333-4343.
[25] O.N. Sara, Performance analysis of rectangular ducts with staggered square pin fins, Energy Conversion Management, 44 (2003) 1787-1803.
[26] D. Rakshit, C. Balaji, Thermodynamic optimization of conjugate convection from a finned channel using genetic algorithms, Heat and Mass Transfer 41 (2005) 535-544.
[27] A.K. Bassam, H. Abu, Fin placement for optimal forced convection heat transfer from a cylinder in cross-flow, International Journal for Numerical Methods in Heat & Fluid Flow 15 (2005) 277-295.
[28] L.Z. Zhang, Laminar flow and heat transfer in plate-fin triangular ducts in thermally developing entry region, International Journal Heat and Mass Transfer 50 (2007) 1637-1640.
[29] S.H. Kim, A.K. Anand, Laminar developing flow and heat transfer between a series of parallel plates with surface mounted discrete heat sources, International Journal Heat Mass Transfer 37 (1994) 2231–2244.
[30] Z. Guo, N.K. Anand, Three dimensional heat transfer in a channel with a baffle in a entrance region, Numerical Heat Transfer A 31 (1997) 21-35.
[31] A. Campo. Heat removal of in-tube viscous flows to air with the assistance of arrays of plate fins Part I: theoretical aspects involving 3-D, 2-D and 1-D models, International Journal of Numerical Methods Heat Fluid Flow 10 (2000) 334-354.
[32] L. Octavio, D.M. Gilbert, D. Erik, Study of the optimal layout of cooling fins in forced convection cooling, Microelectronics Reliability, 42 (2002) 1101-1111.
[33] F.B. Tehrani, M.N. Abadi, Numerical analysis of laminar heat transfer in entrance region of a horizontal channel with transverse fins, International Communications Heat Mass Transfer 31 (2004) 211-220.
[34] A.A. Sarkhi, Comparison between variable and constant height shrouded fin array subjected to forced convection heat transfer, International Communications in Heat and Mass Transfer 32(2005) 548-556.
[35] S.S. Mousavi, K. Hooman, Heat and fluid flow in entrance region of a channel with staggered baffles, Energy Conversion and Management, 47 (2006) 2011-2019.
[36] S.S. Mousavi, K. Hooman, S.J. Mousavi. A genetic algorithm optimization for a finned channel performance. Applied Mathematics and Mechanics English Edition 28 (2007) 1597-1604.
[37] F. Hong, P. Cheng, Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks, International Communications in Heat Mass Transfer 36 (2009) 651-656.
[38] M.R. Shaeri, M. Yaghoubi, Thermal enhancement from heat sinks by using perforated fins, Energy Conversion Management 50 (2009) 1264-1270.
[39] M. Famouri, K. Hooman, F. Hooman. Effects of thermal boundary condition, fin size, spacing, tip clearance, and material on pressure drop, heat transfer, and entropy generation optimization for forced convection from a variable-height shrouded fin array. Heat Transfer Research 40 (2009) 245-261.
[40] L.Z. Zhang, Turbulent Three-Dimensional Air Flow and Heat Transfer in a Cross-Corrugated Triangular Duct, ASME Journal of Heat Transfer 127 (2005) 1151-1158.
[41] L.Z. Zhang, Heat and mass transfer in plate-fin sinusoidal passages with vapor-permeable wall materials, International Journal of Heat Mass Transfer 51 (2008) 618-629.
[42] L.Z. Zhang, C.H. Liang, L.X. Pei, Conjugate heat and mass transfer in membrane-formed channels in all entry regions, International Journal of Heat Mass Transfer 53 (2010) 815-824.
[43] M.H. Yang, R.H. Yeh, J.J. Hwang, Forced convective cooling of a fin in a channel, Energy Conversion and Management 51 (2010) 1277-1286.
[44] J.W. Ou, K.C. Cheng, R.C. Lin, Combined free and forced laminar convection in inclined rectangular channels, International Journal of Heat and Mass Transfer 19 (1976) 277-283.
[45] K.J. Kennedy, A. Zebib, Combined free and forced convection between horizontal parallel planes: some case studies, International Journal of Heat and Mass Transfer 26 (1983) 471-474.
[46] S. Mirza, H.M. Soliman, The influence of internal fins on mixed convection inside horizontal tubes, International Communications in Heat and Mass Transfer 12 (1985) 191-200.
[47] C. Prakash, P. Renzoni, Effect of buoyancy on laminar fully developed flow in a vertical annular passage with radial internal fins, International Journal of Heat and Mass Transfer 28 (1985) 995-1003.
[48] W. Aung, G. Worku, Developing flow and flow reversal in a vertical channel with asymmetric wall temperatures, Journal of Heat Transfer 108 (1986) 299-304.
[49] W. Aung, G. Worku, Theory of fully-developed, combined convection including flow reversal, Journal of Heat Transfer 108 (1986) 485-488.
[50] S. Habchi, S. Acharya, Laminar mixed convection in a partially blocked, vertical channel, International Journal of Heat and Mass Transfer 29 (1986) 1711-1722.
[51] W. Aung, Mixed convection in internal flow. In Handbook of Single-Phase Convective Heat Transfer, Wiley, New York (1987) Chapt. 15.
[52] V. Prasad, F.C. Lai, F.A. Kulacki, Mixed convection in horizontal porous layers heated from below, ASME Journal of Heat Transfer 110 (1988) 395–402.
[53] J.R. Maughan, F.P. Incropera, Mixed convection heat transfer with longitudinal fins in a horizontal parallel plate channel: Part I—Numerical results, ASME Journal of Heat Transfer 112 (1990) 612-618.
[54] C.H. Cheng, H.S. Kou, W.H. Huang, Flow reversal and heat transfer of fully developed mixed convection in vertical channels, AIAA Journal of Thermophysics Heat Transfer 4 (1990) 375-383.
[55] I.M. Rustum, H.M. Soliman, Numerical analysis of laminar mixed convection in horizontal internally finned tubes, International Journal of Heat and Mass Transfer 33 (1990) 1485-1496.
[56] J.T. Lin, B.F. Armaly, T.S. Chen, Mixed convection in buoyancy-assisting, vertical backward-facing step flows, International Journal of Heat and Mass Transfer 33 (1990) 2121-2131.
[57] J.T. Lin, B.F. Armaly and T.S. Chen, Mixed convection heat transfer in inclined backward-facing step flows, International Journal of Heat and Mass Transfer 34 (1991) 1568-1571.
[58] D. Elpidorou, V. Prasad, V. Modi, Convection in a vertical channel with a finite wall heat source, International Journal of Heat and Mass Transfer 34 (1991) 573–578.
[59] C.H. Cheng, C.D. Luy, W.H. Huang, Buoyancy effect on the heat convection in vertical channels with fin array at low Reynolds numbers, International Journal of Heat and Mass Transfer 35 (1992) 2643-2653.
[60] S.Y. Kim, H.J. Sung, J.M. Hyun, Mixed convection from multiple layer boards with cross-stream periodic boundary conditions, International Journal Heat and Mass Transfer 35 (1992) 2941–2952.
[61] C.Y. Choi, A. Ortega, Mixed convection in an inclined channel with a discrete heat source, International Journal of Heat and Mass Transfer 36 (1993) 3119–3134.
[62] C.H. Cheng, J.J. Yang, Buoyancy-induced recirculation bubbles and heat convection of developing flow in vertical channels with fin arrays, International Journal of Heat and Fluid Flow 15(1994) 11-19.
[63] C.H. Cheng, W.P. Ma, W.H. Haung, Numerical predictions of entropy generation for mixed convective flows in a vertical channel with transverse fin array, International Communications in Heat and Mass Transfer 21 (1994) 519-530.
[64] D.B. Ingham, P. Watson, P.J. Heggs, Recirculating laminar mixed convection in a horizontal parallel plate duct, International Journal of Heat and Fluid Flow 16 (1995) 202-210.
[65] H.C. Fung, A. Lazaridis, Finite element analysis of laminar flow in a vertical channel with fin array, Finite Elements in Analysis and Design 24 (1996) 77-93.
[66] C.Y. Choi, S.J. Kim, Conjugate mixed convection in a channel: modified five percent deviation rule, International Journal of Heat and Mass Transfer 39 (1996) 1223-1234.
[67] H.W. Wu, S.W. Perng, Effect of an oblique plate on the heat transfer enhancement of mixed convection over heated blocks in a horizontal channel, International Journal of Heat and Mass Transfer 42 (1999) 1217-1235.
[68] C. Gau, Y.C. Jeng, C.G. Liu, An experimental study on mixed convection in a horizontal rectangular channel heated from a side, ASME Journal of Heat Transfer 122 (2000) 701–707.
[69] M. Ouzzane, N. Galanis, Numerical analysis of mixed convection in inclined tubes with external longitudinal fins, Solar Energy 71 (2001) 199-211.
[70] A. Ozsunar, S. Baskaya and M. Sivrioglu, Numerical analysis of Grashof number, Reynolds number and inclination effects on mixed convection heat transfer in rectangular channels, International Communication in Heat and Mass Transfer 28 (2001) 985-994.
[71] M. Yilmaz, The effect of inlet flow baffles on heat transfer, International Communications in Heat and Mass Transfer 30 (2003) 1169-1178.
[72] A. Barletta, E.R. Schio, E. Zanchini, Combined forced and free flow in a vertical rectangular duct with prescribed wall heat flux, International Journal of Heat and Fluid flow 24 (2003) 874–887.
[73] S. Kasbioui, E.K. Lakhal, M. Hasnaoui, Mixed convection in rectangular enclosures with adiabatic fins attached on the heated wall, Engineering Computations 20 (2003) 152-177.
[74] A.A. Sarkhi, E.A. Nada, B.A. Akash, J.O. Jaber, Numerical investigation of shrouded fin array under combined free and forced convection, International Communications in Heat and Mass Transfer 30 (2003) 435-444.
[75] E. Arquis, M. Rady, Study of natural convection heat transfer in a finned horizontal fluid layer, International Journal of Thermal Sciences 44 (2005) 43-52.
[76] B. Premachandran, C. Balaji, Mixed convection heat transfer from a horizontal channel with protruding heat sources, Heat Mass Transfer 41 (2005) 510-518.
[77] N.H. Saeid, Mixed convection flow along a vertical plate subjected to time-periodic surface temperature oscillations, International Journal of Thermal Sciences 44 (2005) 531-539.
[78] A. Pantokratoras, Forced and mixed convection boundary layer flow along a flat plate with variable viscosity and variable Prandtl number: new results, Heat and Mass Transfer 41 (2005) 1085–1094.
[79] J. Orfi, N. Galanis, Mixed convection with heat and mass transfer in horizontal tubes, International Communications in Heat and Mass Transfer 32 (2005) 511–519.
[80] N.M. Brown, F.C. La, Correlations for combined heat and mass transfer from an open cavity in a horizontal channel, International Communications in Heat and Mass Transfer 32 (2005) 1000-1008.
[81] S.E. Alimi, J. Orfi, S.B. Nasrallah, Buoyancy effects on mixed convection heat and mass transfer in a duct with sudden expansions, Heat Mass Transfer 41 (2005) 559-567.
[82] M. Bakkas, A. Amahmid, M. Hasnaoui, Steady natural convection in a horizontal channel containing heated rectangular blocks periodically mounted on its lower wall, Energy Conversion Management 47 (2006) 509-528.
[83] M. Mobedi, B. Sunden, Natural convection heat transfer from a thermal heat source located in a vertical plate fin, International Communications in Heat and Mass Transfer 33 ( 2006) 943-950.
[84] T.S. Chang, Effects of a finite section with linearly varying wall temperature on mixed convection in a vertical channel, International Journal of Heat and Mass Transfer 50 (2007) 2346-2354.
[85] M. Bakkas, A. Amahmid, M. Hasnaoui, Numerical study of natural convection in a horizontal channel provided with rectangular blocks releasing uniform heat flux and mounted on its lower wall, Energy Conversion Management 49 (2008) 2757-2766.
[86] H.G. Yalcin, S. Baskaya, M. Sivrioglu, Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface, International Communications in Heat and Mass Transfer 35 (2008) 299-311.
[87] M.H. Yang, R.H. Yeh, J.J. Hwang, Mixed convective cooling of a fin in a channel, International Journal of Heat Mass Transfer, 53 (2010) 760-771.
[88] J.W. Stachiewicz, Effect of the variations of local film coefficients on fin performances, ASME Journal of Heat Transfer 91 (1969) 21-26.
[89] E.M. Sparrow, J.E. Niethammer, A. Chaboki, Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment, International Journal Heat Mass Transfer 25 (1982) 961-73.
[90] E.M. Sparrow, S.B. Vemuri, D.S. Kadle, Enhanced and local heat transfer, pressure drop, and flow visualization for arrays of block-like electronic components, International Journal Heat Mass Transfer 26 (1983) 689-99.
[91] S. Naik, S.D. Probert, C.I. Wood, Thermal-hydraulic characteristics of a heat exchanger: the vertical rectangular fins being aligned parallel to the mean air-flow in the duct, Applied Energy 29 (1988) 217-252.
[92] R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger, Experimental Thermal and Fluid Science 10 (1995) 171-180.
[93] C.W. Leung, S.D. Probert, Heat-exchanger performance: influence of gap width between consecutive vertical rectangular fin-arrays, Applied Energy 56 (1997) 1-8.
[94] S. Dutta, P. Dutta, R.E. Jones, J.A. Khan, , Heat transfer coefficient enhancement with perforated baffles, ASME Journal of Heat Transfer, 120 (1998) 795–797.
[95] P. Dutta, S. Dutta, Effect of baffle size, perforation, and orientation on internal heat transfer enhancement, International Journal of Heat and Mass Transfer 41 (1998) 3005–3013.
[96] T.J. Young, K. Vafai, Experimental and numerical investigation of forced convective characteristics of arrays of channel mounted obstacles, ASME Journal of Heat Transfer 121 (1999) 34–42.
[97] S.S. Hsieh, I.W. Huang, Heat transfer and pressure drop of laminar flow in horizontal tubes with/without longitudinal inserts, ASME Journal of Heat Transfer 122 (2000) 465-475.
[98] O.N. Sara, T. Pekdemir, S. Yapici, H. Ersahan, Thermal performance analysis for solid and perforated blocks attached on a flat surface in duct flow, Energy Conversion Management 41 (2000) 1019-28.
[99] T. Igarashi, T. Fukuoka, Pressure drop of arrays of in-line blocks on the wall of parallel channel, Transactions of the Japanese Society of Mechanical Engineering 66 (2000) 1535-43.
[100] T. Igarashi, H. Nakamura, T. Fukuoka, Pressure drop and heat transfer of arrays of in-line circular blocks on the wall of parallel channel, International J Heat and Mass Transfer 47 (2004) 4547–57.
[101]K. Bilen, U. Akyol, S. Yapici, Heat transfer and friction correlation and thermal performances analysis for a finned surface, Energy Conversion and Management 42 (2001) 1071–1083.
[102] S.W. Chang, L.M. Su, T.L. Yang, S.F. Chiou, Enhanced heat transfer of forced convective fin flow with transverse ribs, International Journal of Thermal Sciences 43 (2004) 185-200
[103]U. Akyol, K. Bilen, Heat transfer and thermal performance analysis of a surface with hollow rectangular fins, Applied Thermal Engineering 26 (2006) 209-216.
[104] T.M. Jeng, S.C. Tzeng, Pressure drop and heat transfer of square pin-fin arrays in in-line and staggered arrangements, International Journal of Heat and Mass Transfer 50 (2007) 2364-2375.
[105] E.M. Sparrow and C. Prakash, Enhancement of natural convection heat transfer by a staggered array of discrete vertical plates. Journal of Heat Transfer (1980) 215–220.
[106] D.G. Osborne, F.P. Incropera, Laminar, mixed convection heat transfer for flow between horizontal plates with asymmetric heating, International of Journal and Heat Mass Transfer 28 (1985) 207-217.
[107] J.R. Maughan, F.P. Incropera, Experiments on mixed convection heat transfer for airflow in horizontal and inclined channel, International Journal of Heat and Mass Transfer 30 (1987) 1307-1318.
[108]J.R. Maughan, F.P. Incropera, Regions of heat transfer enhancement for laminar mixed convection in a parallel plate channel, International Journal of Heat and Mass Transfer 33 (1990) 555-570.
[109] J.R. Maughan, F.P. Incropera, Mixed convection heat transfer with longitudinal fins in a horizontal parallel plate channel: Part II—Experimental results, ASME Journal of Heat Transfer 112 (1990) 619-624.
[110] C. Herman, E. Kang, Heat transfer enhancement in a grooved channel with curved vanes, International Journal of Heat and Mass Transfer 45 (2002) 3741-3757.
[111]A. Ozsunar, S. Baskaya, M. Sivrioglu, Experimental investigation of mixed convection heat transfer in a horizontal and inclined rectangular channel, Heat and Mass Transfer 38 (2002) 271-278.
[112] P. Dutta, A. Hossain, Internal cooling augmentation in rectangular channel using two inclined baffles, International Journal of Heat and Fluid Flow 2 (2005) 223-232.
[113] C.W. Lin, Experimental study of thermal behaviors in a rectangular channel with baffle of pores, International Communications in Heat and Mass Transfer 33 (2006) 985- 992.
[114] A. Bahlaoui, A. Raji, M. Hasnaoui, M. Naimi, T. Makayssi, M. Lamsaadi, Mixed convection cooling combined with surface radiation in a partitioned rectangular cavity, Energy Conversion Management 50 (2009) 626-635.
[115] C.S. Yang, C.G. Liu, C. Gau, Study of channel divergence on the flow and heat transfer in horizontal ducts heated from a side, Journal of Thermal Sciences 48 (2009) 105-113.
[116] M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel, International Journal of Heat and Mass Transfer 53 (2010) 2149-2158.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code