Responsive image
博碩士論文 etd-0708111-232032 詳細資訊
Title page for etd-0708111-232032
論文名稱
Title
蕊鞘熔融紡絲製備碳奈米纖維及其化學活化之研究
Carbon nanofibers and chemically activated carbon nanofibers by core/sheath melt-spinning technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
177
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-15
繳交日期
Date of Submission
2011-07-08
關鍵字
Keywords
化學活化、活性碳奈米纖維、碳奈米纖維、蕊鞘熔融紡絲、原子力顯微鏡
carbon nanofibers, core/sheath melt-spinning, atomic force microscopy, activated carbon nanofibers, chemical activation
統計
Statistics
本論文已被瀏覽 5691 次,被下載 3
The thesis/dissertation has been browsed 5691 times, has been downloaded 3 times.
中文摘要
本研究是以熔融紡絲技術製備碳奈米纖維(CNF)與活性碳奈米纖維(ACNF)。對於以無溶劑的聚丙烯/(酚醛-聚乙烯)聚合物經蕊鞘熔融紡絲技術製備碳奈米纖維的特別方法,有三個主要步驟:首先將聚丙烯(蕊部)與酚醛-聚乙烯(鞘部)共同熔融壓出紡絲形成蕊鞘纖維,其次將蕊鞘纖維穩定化得到碳纖維前驅物,最後將碳纖維前驅物於高溫下碳化形成碳奈米纖維。由掃描式電子顯微鏡與穿透式電子顯微鏡圖顯示碳奈米纖維的直徑約100-600 nm,纖維長度大於80μm,且酚醛樹脂形成碳奈米纖維的碳化率約達45 %,這些表面平滑的碳奈米纖維束呈現方向性且捲曲成纖維狀排列。由X射線繞射儀、能量散佈X射線、拉曼光譜與選區電子繞射顯示碳奈米纖維的結構具有石墨顆粒均勻地分佈在一個無定形碳材中的混合相無定形碳材料,成分含有碳元素90 %,含氧元素10 %。
以熔融紡絲技術製備碳奈米纖維為基礎,製備一系列活性碳奈米纖維並以掃描式電子顯微鏡、穿透式電子顯微鏡、X射線繞射儀、能量散佈X射線、拉曼光譜與原子力顯微鏡分析表面形態及微細結構也特別以原子力顯微鏡作定性與定量的表面形態分析。活性碳奈米纖維的結構也具有石墨顆粒均勻地分佈在一個無定形碳材中的混合相無定形碳材料,並含有碳元素73 %,含氧元素27 %。活性碳奈米纖維的總孔洞體積比碳奈米纖維還大,此是氫氧化鉀的化學活化效應使活性碳奈米纖維的微孔體積增加,而磷酸的化學活化效應使活性碳奈米纖維的中孔體積增加。提高氫氧化鉀的濃度可使活性碳奈米纖維的比表面積與微孔體積變大,也使平均孔洞直徑變小的趨勢。
Abstract
In this study, we developed the manufacturing pathways of carbon nanofibers (CNF) and activated carbon nanofibers (ACNF) via the “melt-spinning” method. A novel route based on the solvent-free core/sheath melt-spinning of polypropylene/ (phenol formaldehyde-polyethylene) (PP/(PF-PE)) to prepare CNF. The approach consists of three main steps: co-extrusion of PP (core) and a polymer blend of PF and PE (sheath), followed by melt-spinning, to form the core/sheath fibers; stabilization of core/sheath fibers to form the carbon fiber precursors; and carbonization of carbon fiber precursors to form the final CNF. Both scanning electron microscopy and transmission electron microscopy images reveal long and winding CNF with diameter 100 - 600 nm and length greater than 80 μm. With a yield of ~ 45 % based on its raw material PF, the CNF exhibits regularly oriented bundles which curl up to become rolls of wavy long fibers with clean and smooth surface. Results from X-ray diffractometry, energy dispersive X-ray, Raman spectroscopy, and selected area electron diffraction patterns further reveal that the CNF exhibits a mixed phase of carbon with graphitic particles embedded homogeneously in an amorphous carbon matrix. The carbon atoms in CNF are evenly distributed in a matrix having a composition of 90 % carbon element and 10 % in oxygen element.
A series of ACNF have also been prepared based on the chemical activation on the thus-prepared CNF; their morphological and microstructure characteristics were analyzed by scanning electron microscopy, atomic force microscopy (AFM), Raman spectroscopy, and X-ray diffractometry, with particular emphasis on the qualitative and quantitative AFM analysis. The effect of activating agent, potassium hydroxide and phosphorous acid, is compared; factors affecting the surface morphology and microstructure of ACNF are analyzed. The ACNF also exhibits a mixed phase of carbon with graphitic particles embedded homogeneously in an amorphous carbon matrix. The resulting ACNF consists of 73 % C element and 27 % O element. The total pore volume of the all activated ACNF is larger than that of un-activated CNF. It can be inferred that chemical activation by KOH results in increased micropore volume in carbon nanofibers; while the micropores produced by the chemical activation of H3PO4 may further be activated and then enlarged to become the mesopores at the expense of micropore volume. For the concentration effect of KOH on ACNF, it can be inferred that high concentration KOH activation results in increased SBET and micropore volume in carbon nanofibers. The average pore diameter of ACNF gradually decreases as the KOH concentration increases.
目次 Table of Contents
論文審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of contents v
List of figures viii
List of tables xiii
List of schemes xiv
List of abbreviations xv

Chapter 1 Introduction
1.1 Carbon nanofibers……………………………… 1
1.2 Activated carbon nanofibers……………………8
1.3 Objectives of this study………………………...9

Chapter 2 Literature review - general survey…….13
2.1 Vapor-grown method…………………………14
2.1.1 Chemical vapor deposition………………..14
2.1.2 Arc-discharge………………………………18
2.1.3 Laser-ablation……………………………20
2.2 Polymer spinning……………………………..22
2.2.1 Polymer blends by core-shell microspheres..22
2.2.2 Electro-spinning…………………………….28
2.2.3 Core/sheath fibers and matrix-fibril fibers…30
2.3 Activation of carbon nanofibers…………………35
2.3.1 Chemical activation………………………….36
2.3.2 Physical activation…………………………...40

Chapter 3 Amorphous carbon nanofibers by phenol formaldehyde-based polymer blend
3.1 Previous work on carbon nanofibers……….....43
3.2 Materials and Methods………………..........46
3.2.1 Materials…………………………………….46
3.2.2 Experiments…………………………………....49
3.2.3 Characterizations……………………............53
3.3 Results and Discussion
3.3.1 Spinning properties of core/sheath fibers…55
3.3.2 Cross-section and morphology of fibers….59
3.3.3 Thermal properties of carbon fibers precursors ...72
3.3.4 Morphology of carbon nanofibers …………..78
3.3.5 Microstructure of carbon nanofibers ………..84
3.4 Summary………………………………………..94

Chapter 4 Activated amorphous carbon nanofibers by chemical activation
4.1 Previous work on activated carbon nanofibers…96
4.2 Materials and Methods………………………….99
4.2.1 Materials………………………………………..99
4.2.2 Experiments……….........................................99
4.2.3 Characterizations……………………...........104
4.3 Results and discussion………………………107
4.3.1 Morphological characterization (SEM, AFM and STM)……………..107
4.3.2 Microstructure Identification (XRD, SAED and Raman)…………….121
4.3.3 Surface area characterization……....126
4.3.4 Comparison on chemical activation methods…………..135
4.4 Summary…………………………..........137

Chapter 5 Concluding remarks
5.1 Conclusions .......................................................140
5.2 Recommendations for further works................144

References………………………………….....147
Vitae……………………………………….....160
參考文獻 References
[1] J. D. Bernal, The structure of graphite. Proceedings of the Royal Society of London A 1924; 106(Dec. 1): 749-773.
[2] R. E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London A 1951; 209(1097): 196-218.
[3] B. Bhushan, Handbook of nanotechnology, 2nd edition. Springer science+business media, Inc. Heidelberg, 2007.
[4] M. Ma, R. M. Hill, G. C. Rutledge, A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. adhesion sci. technology 2008; 22(15): 1799-1817.
[5] M. Inagaki, K. Kaneko, T. Nishizawa, Nanocarbons - recent research in Japan. Carbon 2004; 42(8-9): 1401-1417.
[6] Q. P. Pham, U. Sharma, A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue engineering 2006; 12(5): 1197-1211.
[7] T. V. Hughes and C. R. Chambers, Manufacture of carbon filaments. US Patent No. 405480, 1889.
[8] P. Morgan, Carbon fibers and their composites. Taylor & Francis Group, CRC Press, Boca Raton, FL, 2005.
[9] L. V. Radushkevich and V. M. Lukyanovich, Structure of the carbon produced in the thermal decomposition of carbon monoxide on an iron catalyst. Zh. Fiz. Khim. (Sov. J. Phys. Chem.) 1952; 26: 88-95.
[10] T. Koyama and M. T. Endo, Structure and growth process of vapor-grown carbon fibers. Oyo Butsuri (in Japanese) 1973; 42(7): 690-696.
[11] G. G. Tibbetts, Lengths of carbon fibers grown from iron catalyst particles in natural gas. Journal of Crystal Growth 1985; 73(3): 431-438.
[12] F. Benissad, P. Gadelle, M. Coulon, and L. Bonnetain, Formation de Fibres de Carbone a Partir du Methane: I Croissance Catalytique et Epaississement Pyrolytique. Carbon 1988; 26(1): 61-69.
[13] R. T. K. Baker, Synthesis, properties, and applications of graphite nanofibers. http://ftp.wtec.loyola.edu/loyola/nano/US.Review/09_03.htm, 1998.
[14] S. Iijima, Helical Microtubules of Graphitic Carbon. Nature 1991; 354(6348): 56-58.
[15] S. Ijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993; 363(6430): 603-605.
[16] S. Ijima, P. M. Ajayan, T. Ichihashi; Growth-model for Carbon Nanotubes. Phys. Rev. Lett. 1992; 69(21): 3100-3103.
[17] C. Kim, S.H. Park, W. J. Lee, K. S. Yang, Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochimica Acta 2004; 50(2-3): 877-881.
[18] I. S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process - A review. Journal of materials processing Technology 2005; 167(2-3): 283-293.
[19] H. Q. Hou, D. H. Reneker, Carbon nanotubes on carbon nanofibers: A novel structure based on electrospun polymer nanofibers. Adv. Mater. 2004; 16(1): 69-73.
[20] C. Kim, S. H. Park, J. L. Cho, D. Y. Lee, T. J. Park, W. J. Lee, K. S. Yang, Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spectroscopy 2004; 35(11): 928-933.
[21] Y. Wang, S. Serrano, J. J. Santiago-Aviles, Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals 2003; 138(3): 423-427.
[22] N. Kasahara and A. Oya, Preparation of thin carbon fibers from phenol-formaldehyde polymer micro-beads dispersed in polymer matrix. Carbon 2000; 38(8): 1141-1144.
[23] N. Patel, K. Okabe, A. Oya, Designing carbon materials with unique shapes using polymer blending and coating techniques. Carbon 2002; 40(3): 315-320.
[24] D. Hulicova, A. Oya, The Polymer blend technique as a method to design fine carbon materials. Carbon 2003; 41(7): 1443-1450.
[25] P. M. Ajayan, O. Z. Zhou, Carbon nanotubes synthesis structure properties and application, chapter 13 Applications of carbon nanotubes. Springer-Verlag Berlin Heidelberg, 2001.
[26] V. Z. Mordkovich, Carbon nanofibers: A new ultrahigh-strength material for chemical technology. Theoret. Found. Chem. Eng. 2003; 37(5): 429-438.
[27] E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder et al., Carbon nanofibers for composite applications. Carbon 2004; 37(5): 1153-1158.
[28] Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M. S. Dresselhaus, Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon 2004; 42(12-13): 2423-2432.
[29] V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez et al, Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J. Phys. Chem. C 2010; 114(22): 10302-10307.
[30] M. Endo, Y. J. Kim, T. Fujino, S. Oyama, O. Naohiko, K. Sato et al, A characteristic of alkaline activated mesophase based carbon for electrochemical capacitor. Mol. Cryst. Liq. Cryst. Proceeding of the 1st international symposium on Nanocarbons 2002; 388: 481/67-488/74.
[31] M. Endo, Y. J. Kim, Y. Nishimura, T. Inoue, H. Ohta, M. S. Dresselhaus et al, Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon 2002; 40(14): 2613-2626.
[32] Y. J. Kim, Y. A. Kim , T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus, Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2006; 2(3): 339-345.
[33] Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z. L. Yu, A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater. Lett. 2002; 57(4): 988-991.
[34] J. M. Blackman, J. W. Patrick, A. Arenillas, W. Shi, C. E. Snape, Activation of carbon nanofibres for hydrogen storage. Carbon 2006; 44(8): 1376-1385.
[35] F. Suarez-Garcia, E. Vilaplana-Ortego, M. Kunowsky, M. Kimura, A. Oya, A. Linares-Solano, Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. Int. J. Hydrogen Energ. 2009; 34(22): 9141-9150.
[36] V. Jimenez, P. Sanchez, J. A. Diaz, J. L. Valverde, A. Romero, Hydrogen storage capacity on different carbon materials. Chem. Phys. Lett. 2010; 485(1-3): 152-155.
[37] L. Zubizarreta, A. Arenillas, J. J. Pis, Carbon materials for H2 storage. Int. J. Hydrogen Energ. 2009; 34: 4575-4581.
[38] J. S. Im, S.J. Park, Y.S. Lee, Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater. Res. Bull. 2009; 44(9): 1871-1878.
[39] N. N. Bui, B. H. Kim, K. S. Yang, M. E. Dela Cruz, J. P. Ferraris, Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends. Carbon 2009; 47(10): 2538-2539
[40] E. J. Ra, E. Raymundo-Pinero, Y. H. Lee, F. Beguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon; 2009, 47(13): 2984-2992.
[41] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, A microscopic view of physical and chemical activation in the synthesis of porous carbons. Langmuir 2006; 22(23): 9730-9739.
[42] J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004; 42(7): 1367-1370.
[43] B. J. Kim, Y. S. Lee, S. J. Park, A study on pore-opening behaviors of graphite nanofibers by a chemical activation process. J. Colloid Interface Sci. 2007; 306(2): 454-458.
[44] D. Luxembourg, X. Py, A. Didion, R. Gadiou, C. Vix-Guterl, G. Flamant, Chemical activations of herringbone-type nanofibers. Micropo. and Mesopo. Mater. 2007; 98(1-3): 123-131.
[45] A. Perrin, A. Celzard, A. Albiniak, J. Kaczmarczyk, J. F. Mareche, G. Furdin, NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon 2004; 42(14): 2855-2866.
[46] Z. Yue, J. Economy, C. L. Mangun, Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon 2003; 41(9): 1809-1817
[47] V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez et al, Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochim Acta 2009; 54(28):7452-7457.
[48] M. Endo, Y. A. Kim, T. Takeda, S.H. Hong, T. Matusita, T. Hayashi, M. S. Dresselhaus, Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon 2001; 39(13): 2003-2010.
[49] V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X. B. Zhang, Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon 1995; 33(12): 1727-1738.
[50] N. E. Tran and S. G. Lambrakos, Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique. Nanotechnology 2005; 16(6): 639-646.
[51] M. C. Paiva, P. Kotasthane, D. D. Edie, A. A. Ogale, UV stabilization route for melt-processible PAN-based carbon fibers. Carbon 2003; 41(7): 1399-1409.
[52] A. K. Naskar, R. A. Walker, S. Proulx ,D. D. Edie, A. A. Ogale, UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon 2005; 43(5): 1065-1072.
[53] H. G. Tennent, Carbon fibrils, method for producing same and compositions containing same. U.S. Patent No. 4663230, filed on 06-Dec-1984.
[54] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, M. L. Simpson et al, Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Applied Physics 2005; 97(4): 41301-41339.
[55] G. B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y. F. Shi, H. J. Quan, A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon 2004; 42(3): 635-640.
[56] L. Ci, J. Q. Wei, B. Q. Wei, J. Liang, C. Xu, D. H. Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 2001; 39(3): 329-335.
[57] L. Ci, Y. H. Li, B. Q. Wei, J. Liang, C. Xu, D. Wu, Preparation of carbon nanofibers by the floating catalyst method. Carbon 2000; 38(14): 1933-1937.
[58] M. Endo, K. T., T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang, M. S. Dresselhaus, Stacking nature of graphene layers in carbon nanotubes and nanofibers. Phys. Chem. Solids 1997; 58(11): 1707-1712.
[59] M. Endo, Y. A. K., T. Hayashi, K. Nishimurab, T. Matusita, K. Miyashita, M.S. Dresselhaus, Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications. Carbon 2001; 39(9): 1287-1297.
[60] M. Jayasankar, R. Chand, S. K. Gupta, D. Kunzru, Vapor-grown carbon fibers from benzene pyrolysis. Carbon 1995; 33(3): 253-258.
[61] Y. A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, Microstructural Change of Cup-Stacked Carbon Nanofiber by Post-Treatment. Mol. Cryst. Liq. Cryst. 2002; 387: 381/157-385/161.
[62] Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, Z. H. Shen, Tailoring the diameters of vapor-grown carbon nanofibers. Carbon 2000; 38(6): 921-927.
[63] Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, Z. H. Shen, The influence of preparation parameters on the mass production of vapor-grown nanofibers. Carbon 2000; 38(6): 789-795.
[64] V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chemical Physics Letters 2002; 361(5-6): 492-498.
[65] Y. Y. Fan, F. Li, H. M. Cheng, G. Su, Y. D. Yu, Z. H. Shen, Preparation, morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers. J. Mater. Res. 1998; 13(8): 2342-2346
[66] S. Collins, R. Brydson, B. Rand, Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon 2002; 40(7): 1089-1100.
[67] G. B. Zheng, H. Sano, Y. Uchiyama; New structure of carbon nanofibers after high-temperature heat-treatment. Carbon 2002; 41(4): 853-856.
[68] T. W. Ebbesen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 1992; 358(6383): 220-222.
[69] Z. J. Shi, Y. Lian, S. Iijima, L. Zhou, K. T. Yue, S. L. Zhang et al, Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 1999; 37(9): 1449-1453.
[70] M. Keidar, A. M. Waas, On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology 2004; 15(11): 1571-1575.
[71] H. Takikawa, O. Kusano, T. Sakakibara, Graphite cathode spot produces carbon nanotubes in arc discharge. J. Phys. D: Appl. Phys. 1999; 32(18): 2433-2437.
[72] Y. Ando, X. L. Zhao, T.i Sugai, M. Kumar, Growing Carbon Nanotubes. Materials Today 2004; Oct.: 22-29.
[73] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters 1995; 243(1-2): 49-54.
[74] C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A: Materials Science & Processing 2001; 72(5): 573-580.
[75] D. Hulicova, F. Sato, K. Okabe, M. Koishi, A. Oya, An attempt to prepare carbon nanotubes by the spinning of microcapsules. Carbon 2001; 39(9): 1438-1442.
[76] D. Hulicova, K. Hosoi, S. Kuroda, H. Abe, A. Oya, Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microspheres. Adv. Mater. 2002; 14(6): 452-455.
[77] K. Okabe, T. Yokoyama, N. Shiraishi, A. Oya, Preparation of thin carbon fibers from waste wood-derived phenolic resin. J. mater. sci. 2005; 40(14): 3847-3848.
[78] D. Hulicova, M. Yamamoto, T. Yokoyama, A. Oya, A novel preparation method of carbon nanotubes by spinning core/shell polymer particles. Key engineering materials 2004; 264-268(1-3): 2275-2278.
[79] D. Hulicova, K. Hosoi, S. Kuroda, A. Oya, Carbon nanotubes prepared from three-layered copolymer microspheres of acrylonitrile and methylmethacrylate. Carbon 2005; 43(6): 1246-1253.
[80] J. Ozaki, W. Ohizumi, N. Endo, A. Oya, Preparation of platinum loaded carbon fiber by using a polymer blend. Carbon 1997; 35(10-11): 1676-1677.
[81] J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya et al, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997; 35(7): 1031-1033.
[82] R. Horigome, N. Kasahara, A.Oya, Structure of porous carbon fiber derived from phenolic polymer containing polystyrene microbeads. J. mater. sci. letters 2001; 20(5): 409-411.
[83] Y. Horie, S. Shiraishi, A. Oya, Preferential supporting of platinum particles on pore surface using a polymer blend technique. J. mater. sci. letters 2001; 20(2): 105-106.
[84] N. Kasahara, S. Shiraishi, A. Oya, Heterogeneous graphitization of thin carbon fiber derived from phenol-formaldehyde resin. Carbon 2002; 41(8): 1654-1656.
[85] K. Okabe, S. Shiraishi, A. Oya, Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 degrees C. Carbon 2004; 42(3): 667-669.
[86] D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel?. Adv. Mater. 2004; 16(14): 1151-1170.
[87] G. S. Chung, S. Jo, B. C. Kim, Properties of Carbon Nanofibers Prepared from Electrospun Polyimide. J. Appl. Polym. Sci. 2005; 97(1): 165-170.
[88] Hills Inc., An introduction to bicomponent fibers. http://www.hillsinc.net/images/ Bicotable2.gif.
[89] A. V. Drogun, Mixing and spinnability of polymer blends on the example of the polymide 6.6-poly(ethylene terephthalate) model system. Fibre Chemistry 2002; 34(2): 32-35.
[90] A. Karami, S. T. Balke, Polymer blend de-mixing and morphology development of immiscible polymer blends during tube flow. Polymer Engineering & sci. 2000; 40(11): 2342-2355.
[91] B. Majumdar, D. R. Pault, A. J. Oshinski, Evolution of morphology in compatibilized VS uncompatibilized polyamide blends. Polymer 1997; 38(8): 1787-1808.
[92] B. Wang, J. Zhao, Studies on preparation of immersion-type polypropylene fragrant fiber. I.formation of matrix fiber in the melt-spinning process and its technique of immersion essential oil. J. Appl. Polym. Sci. 2003; 90(7): 1970-1979.
[93] B. S. Yoon, J. Y. Joand, M. H. Suh, Y. M. Lee, S. H. Lee, Mechanical properties of polypropylene/polymide 6 blends: effect of manufacturing processes and compatibilization. polymer 1997; 18(6): 757-764.
[94] D. Gregor-Svetec, Mechanical properties of polypropylene fibers produced from the binary polymer blends of different molecular weights. J. Appl. Polym. Sci. 2000; 75(10): 1211-1220.
[95] E. Fekete, E. Foldes, B. Pukanszky, Effect of molecular interaction on the miscibility and structure of polymer blends. Euro. Polym. J. 2005; 41(4): 727-736.
[96] E. Kormendy, A. Marcincin, M. Hricova, V. Kovacic, Phase morphology of polypropylene-polyethylene terephthalate blend fibers. Fibers&Textiles in Eastern Europe 2005; 13(1): 20-23.
[97] G. J. Nam, K. Y. Kim, J. W. lee, The effect of SEBS on interfacial tension and rheological properties of LDPE/PS blend. J. Appl. Polym. Sci. 2005; 96(3): 905-911.
[98] G. Verfaillie, J. Devaux, R. Legras, Relationship between surface and bulk morphologies for immiscible polymer blends. Polymer 1999; 40(11): 2929-2938.
[99] N. Mekhilef and H. Verhoogtt, Phase inversion and dual-phase continuity in polymer blends: theoretical predictions and experimental results. Polymer 1996; 37(18): 4069-4077.
[100] H. H. Cho, K. H. Kim, Y. A. Kang, H. Ito, T. Kikutani, Fine structure and physical properities of poly(ethylene terephthalate)/polyethylene bicomponent fibers in high-speed spinning. II. poly(ethylene terephthalate) sheath/polyethylene core fibers. J. Appl. Polym. Sci. 2000; 77(10): 2267-2277.
[101] J. R. Collier, O. Romanoschi, S. Petrovan, Elongational rheology of polymer melts and solutions. J. Appl. Polym. Sci. 1998; 69(12): 2357-2367.
[102] M. Frounchi, M. Mehrabzadeh, S. S. Mohseni, Phase morphology of polyblends of amorphous polycarbonate and semi-crystalline polyethylene terephthalate. Iranian polymer journal 2002; 11(3): 151-157.
[103] M. Afshari, R. Kotek , M. H. Kish, H. N. Dast, B. S. Gupta, Effect of blend ratio on bulk properties and matrix-fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer 2002; 43(4): 1331-1341.
[104] N. Dencheva, T. Nunes, M. J. Oilveira, Z. Denchev, Microfibrillar composites based on polyamide/polyethylene blends. 1.Structure investigations in oriented and isotroopic polyamide 6. Polymer 2005; 46(3): 887-901.
[105] P. Potschke, K. Wallheinke, H. Fritsche, H. Stutz, Morphology and properties of blends with different thermoplastic polyurethanes and polyolefines. J. Appl. Polym. Sci. 1997; 64(4): 749-762.
[106] R. T. Tol, V. B. F. Mathot, G. Groeninckx, Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets, part 1:uncompatibized PS/PA6,(PPE/PS)/PA6 and PPE/PA6 blends. Polymer 2005; 46(2): 369-382.
[107] S. V. Nair, Z. Oommen, S. Thomas, Phase Morphology development and melt rheological behavior in nylon 6/polystyrene blends. Polymer 2002; 86(14): 3537-3555.
[108] T. Kikytani, J. Radhakrishnan, S. Arikawa, A. Takaku, F. Niwa, Y. Kudo et al, High-speed melt Spinning of bicomponent fibers: Mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system. J. Appl. Polym. Sci. 1996; 62(11): 1913-1924.
[109] T. Takahashi, J. I. Takimoto, K. Koyama, Elongational viscosity for miscible and immiscible polymer blends. II. blends with a small amount of UHMW polymer. J. Appl. Polym. Sci. 1999; 72(7): 961-969.
[110] T. H. Ku, C. A. Lin, Rheological properties of thermoplastic polyvinyl alcohol and polypropylene blend melts in capillary extrusions. Polymer Research 2005; 12(1): 23-29.
[111] V. G. Rezanova, Y. V. Pridatchenko, M. V. Tsebrenko, Mathematical description of deformation of a dispersed phase polymer blends. Fibre Chemistry 2003; 35(6): 468-474.
[112] X. D. Li, M. Chen, Y. Huang, G. Lin, C. Q. Wang, G. M. Cong et al, In-situ composite based on polypropylene and nylon6. Advances in Polymer Technology 1997; 16(4): 331-336.
[113] Y. B. Choi, S. Y. Kim, Effects of interface on the dynamic mechanical properties of PET/Nylon 6 bicomponent fibers. Polymer 1999; 74(8): 2083-2093.
[114] Z. Cherian, R. Lehman, K. VanNess, Investigation into the morphology and mechanical properties of melt-drawn filaments from uncompatibilized blends of polystyrene and high-density polyethylene. J. Appl. Polym. Sci. 2006; 103(3): 1616-1625.
[115] Z. Denchev, M. J. Oliverira, J. F. Mano, J. C. Viana, S. S. Funari, Nanostructured composites based on polyethylene-polyamide blends. II. Probing the orientation in polyethylene-polyamide nanocomposites and their precursors. J. Macromolecular Sci. 2004; B43(1): 163-176.
[116] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak et al., High surface area carbon nanotubes prepared by chemical activation. Carbon 2002; 40(9): 1614–1617.
[117] S. H. Yoon, S. G. Lim, Y. Song, Y. Ota, A. Tanaka, I. Mochida et al, KOH activation of carbon nanofibers. Carbon 2004; 42(8-9): 1723-1729.
[118] D. Lucio, D. Laurent, G. Roger, S. Yasushi, Y. Noriko, KOH activated carbon multiwall nanotubes. Carbon-Sci. Tech. 2009; 3: 120 -124.
[119] H. Y. Hsiao, F. Y. Chang, L. C. Row, S. H. Cheng, J. P. Chen, Preparation of activated carbon from PAN-based solution blown nonwoven by KOH activation. Taiwan textile research J. 2009; 19(3): 6-12.
[120] C. Merino, P. Soto, E. Vilaplana-Ortego, J. M. G. de Salazar, F. Pico, J. M. Rojo, Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon 2005; 43(3): 551-557.
[121] Y. J. Kim, Y. A. Kim, T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus, Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2006; 2(3): 339-345.
[122] V. Jiménez, P. Sánchez, J. L. Valverde, A. Romero, Effect of the nature the carbon precursor on the physico-chemical characteristics of the resulting activated carbon materials. Materials Chemistry and Physics 2010; 124(1): 223-233.
[123] V. Jimenez, J. A. Diaz, P. Sanchez, J. L. Valverde, A. Romero, Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chemical Engineering J. 2009; 155(3): 931-940.
[124] V. Jimenez, P. Sanchez, J. L. Valverde, A. Romero, Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers. J. Colloid and Interface Sci. 2009; 336(2): 712-722.
[125] V. Jimenez, A. Nieto-Marquez, A. M. Raboso, S. Gil, A. Romero, J. L. Valverde, Influence of the chemical activation of carbon nanofibers on their use as catalyst support. Applied Catalysis A: General 2011; 393(1-2): 78–87.
[126] D. Luxembourg, X. Py, A. Didion, R. Gadiou, C. Vix-Guterl, G. Flamant, Chemical activations of herringbone-type nanofibers. Microporous and Mesoporous Materials 2007; 98(1-3): 123–131.
[127] L. Y. Meng, S. J. Park, Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J. Colloid and Interface Sci. 2010; 352(2): 498–503.
[128] N. C. Hung, I. V. Anoshkin, E. G. Rakov, Chemical Activation of Carbon Nanofibers and Nanotubes. Russian J. Applied Chemistry 2007; 80(3): 443-447.
[129] V. Jimenez, P. Sanchez, A. de Lucas, J. L. Valverde, A. Romero, Influence of the nature of the metal hydroxide in the porosity development of carbon nanofibers. J. Colloid and Interface Sci. 2009; 336(1): 226–234.
[130] K. J. Lee, N. Shiratori, G. H. Lee, I. Mochida, S. H. Yoon, J. Jang et al, Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 2010; 48(15): 4248-4255.
[131] B. H. Kim, N. N. Bui, K. S. Yang, M. dela Cruz, J. P. Ferraris, Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. Bulletin of the Korean Chemical Society 2009; 30(9): 1967-1972.
[132] H. Tavanai, R. Jalili, M. Morshed, Effects of fiber diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibers. Surface and interface analysis 2009; 41(10): 814 -819.
[133] M. K. Seo, S. J. Park, Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater. Sci. and Eng. B 2009; 164(2): 106–111.
[134] C. Kim, K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied physics letters 2003; 83(6): 1216 -1218.
[135] J.A. Macia-Agullo, B.C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004; 42(7): 1367–1370.
[136] M. Inagaki, L. R. Radovic, Nanocarbons. Carbon 2002; 40(12): 2263-2284.
[137] A. P. Ramirez, Carbon nanotubes for science and technology. Bell Labs Tech. J. 2005; 10(3): 171-185.
[138] K. P. De Jong, J. W. Geus, Carbon nanofibers: catalytic synthesis and applications. Catal. Rev.: Sci. Eng. 2000; 42(4): 481-510.
[139] P. J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, United Kingdom, 1999.
[140] G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998; 393(6683): 346-347.
[141] F. L. Zhou, R. H. Gong, Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym. Int. 2008; 57: 837-845.
[142] G. S. Chung, S. M. Jo, B. C. Kim, Properties of carbon nanofibers prepared from electrospun polyimide. J. Appl. Polym. Sci. 2005; 97(1): 165-170.
[143] D. K. Kim, S. H. Park, B. C. Kim, B. D. Chin, S. M. Jo, D. Y. Kim, Electrospun polyacrylonitrile-based carbon nanofibers and their hydrogen storages. Macromolec. Res. 2005; 13(6): 521-528.
[144] H. H. Cho, K. H. Kim, Y. A. Kang, H. Ito, T. Kikutani, Fine structure and physical properties of polyethylene/poly(ethylene terephthalate) bicomponent fibers in high-speed spinning. I. Polyethylene sheath/poly(ethylene terephthalate) core fibers. J. applied polym. sci. 2000; 77(10): 2254-2266.
[145] J. Economy, R. A. Clark, Fibers from Novolacs. U. S. Patent No. 3650102, filed on 1968.
[146] J. Economy, R. A. Clark, Method for production of novolac fibers. U. S. Patent No. 3723588, filed on 1970.
[147] S. L. Hayes, Encyclopedia of Chemical Technology. Wiley, New York, 1981.
[148] P. J. Bruyn, L. M. Foo, A. S. C. Lim, M. G. Looney, D. H. Solomon, The chemistry of novolac resins. Part 4. The strategic synthesis of model compounds. Tetrahedron 1997; 53(40):13915-13932.
[149] C. L. Liu, Q. G. Guo, J. L. Shi, L. Liu, A study on crosslinking of phenolic fibers. Mater. Chem. Phys. 2005; 90(2-3): 315-321
[150] C. L. Liu, W. S. Dong, J. R. Song, L. Liu, Evolution of microstructure and properties of phenolic fibers during carbonization. Mater. Sci. and Eng. A 2007; 459(1-2): 347–354.
[151] N. Kishore, S. Sachan, K. N. Rai, A. Kumar, Synthesis and characterization of a nanofiltration carbon membrane derived from phenol-formaldehyde resin. Carbon 2003; 41(15): 2961-2972.
[152] A. Ermolieff, A. Chabli, F. Pierre, G. Rolland, D. Rouchon, C. Vannuffel et al, XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization. Surf. Interface Anal. 2001; 31(3): 185-190.
[153] J. P. Boudou, J. I. Paredes, A. Cuesta, A. Martinez-Alonso, J. M. D. Tascon, Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon 2003; 41(1): 41-56.
[154] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Edition. Prentice Hall, Upper Saddle River, NJ 07458, 2001.
[155] Y. Kashiwase, T. Ikeda, T. Oya, T. Ogino, Manipulation and soldering of carbon nanotubes using atomic force microscope. Appl. Surf. Sci. 2008; 254(23): 7897-7900.
[156] W. P. Hoffman, Scanning probe microscopy of carbon fiber surfaces. Carbon 1992; 30(3): 315-331.
[157] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation. Carbon 2000; 38(8): 1183-1197.
[158] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy. Carbon 2001; 39(10): 1575-1587.
[159] Y. A. Kim, T. Matusita, T. Hayashi, M. Endo, M. S. Dresselhaus, Topological changes of vapor grown carbon fibers during heat treatment. Carbon 2001; 39(11): 1747-1752
[160] J. I. Paredes, M. Burghard, A. Martinez-Alonso, J. M. D. Tascon, Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Appl. Phys. A 2005; 80(4): 675-682.
[161] J. L. Figueiredo, P. H. Serp, B. Nysten, J. P. Issi, Surface treatments of vapor-grown carbon fibers produced on a substrate - Part II: Atomic force microscopy. Carbon 1999; 37(11): 1809-1816.
[162] S. Bellucci, G. Gaggiotti, M. Marchetti, F. Micciulla, R. Mucciato, M. Regi, Atomic force microscopy characterization of carbon nanotubes. J. Phys. Conf. 2007; Ser. 61: 99-104
[163] K. K. Cheng, T. C. Hsu, L. H. Kao, Carbon nanofibers prepared by a novel co-extrusion and melt-spinning of phenol formaldehyde based core/sheath polymer blends. J. Mater. Sci. 2011; 469(6): 1870-1876
[164] J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon, Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. Micropo. Mesopo. Mater. 2003; 65(2-3): 93-126.
[165] M. Hirose, H. Ito, Y. Kamiyama, Effect of skin layer surface structures on the flux behavior of RO membranes. J. Membr. Sci. 1996; 121(2): 209-215.
[166] X. D. Zhu, F. Ding, H. Naramoto, K. Narumi, AFM investigation on surface evolution of amorphous carbon during ion-beam-assisted deposition. Appl. Surf. Sci. 2006; 253(3): 1480-1483.
[167] M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, M. S. Dresselhaus et al, Structural characterization of milled mesophase pitch-based carbon fibers. Carbon 1998; 36(11): 1633-1641.
[168] O. Beyssac, B. Goffe, J. P. Petitet, E. Froigneux, M. Moreau, J. N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A 2003; 59(10): 2267-2276.
[169] F. Salver-Disma, J. M. Tarascon, C. Clinard, J. N. Rouzaud, Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon 1999; 37(12): 1941-1959
[170] A. Sharma, T. Kyotani, A. Tomita, Comparison of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon 2000; 38(14): 1977-1984.
[171] D. A. Fonseca, H. R. Gutierrez, A. D. Lueking, Morphology and porosity enhancement of graphite nanofibers through chemical etching. Micropo. Mesopo. Mater. 2008; 113(1-3): 178–186.
[172] D. Lozano-Castelló, M. A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 2001; 39(5): 741-749.
[173] M. A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon 2003; 41(2): 267-275.
[174] M. A. Lillo-Rodenas, J. Juan-Juan, D. Cazorla-Amoros, A. Linares-Solano, About reactions occurring during chemical activation with hydroxides. Carbon 2004; 42(7): 1371-1375.
[175] B. J. Lee, S.R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, D. Y. Kim, Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources 2007; 168(2): 546-552
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.191.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.191.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code