Responsive image
博碩士論文 etd-0708112-034445 詳細資訊
Title page for etd-0708112-034445
論文名稱
Title
利用臭氧與氯消毒水中微生物來探討高級水處理場AOC變化及蓄水池水塔清洗頻率相關性之研究
Study of inactivation of microorganisms in water using ozone and chlorine on variation of AOC in advanced water treatment plant and correlations of cleaning frequency in reservoir and water tower
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
204
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-07-08
關鍵字
Keywords
相關性分析、消毒副產物潛勢、生物系統、粉狀活性碳、粒狀活性碳、微生物、生物可利用有機碳、類神經網路方法
PAC, AOC, biological systems, BAC, correlation analysis, microrganisms, DBPsFP, artificial neural network method
統計
Statistics
本論文已被瀏覽 5685 次,被下載 1622
The thesis/dissertation has been browsed 5685 times, has been downloaded 1622 times.
中文摘要
飲用水水源地大部分遭受有機物污染,因此國內淨水場已有加氯消毒的傳統處理更改為以臭氧消毒的高級處理,然而淨水程序對於生物可利用有機碳(Assimilable Organic Carbon, AOC)及消毒副產物潛勢(Disinfection By-Products Formation Potential, DBPsFP)之去除成效仍有進步的空間,至於淨水場處理後的清水在配水管網中水質惡化原因有很多,主要的原因是微生物在配水管線內繁殖,此現象稱為後生長(Aftergrowth) 或再生長(Regrowth)。
本研究將針對高級淨水處理場設置前後之出水與其經配水管網系統流至用戶端的重點水質項目進行調查及研究。本文主要探討的方向有四:(1)藉由粉狀與粒狀活性碳生物系統去除原水AOC之效率,並將水質監測項目以類神經網路系統中之AutoNet(6.03)方法建立AOC預測模式;(2)利用粉狀活性碳生物系統以去除原水中消毒副產物;(3)針對傳統處單元與高級處理單元來比較大腸桿菌群與總菌落數,探討水中臭氧與加氯消毒相互關係;(4)對於用戶之配水貯存設施,探討蓄水池水塔進行水質採樣分析與水塔清洗頻率,再利用套裝統計軟體(Statistical Product and Service Solutions, SPSS)做迴歸分析,並以相關係數(R-squire)來表示彼此間密切的程度,希望了解目前用戶使用之自來水水質狀況,與清洗頻率的要求,進而達到飲用水安全之目的。
在比較粉狀與粒狀生物系統去除原水AOC之效率方面,粒狀與粉狀活性碳生物系統對於AOC有一定良好去除效果,AOC去除率分別可達到53%及54%,而SUVA (Specific Ultraviolet Absorbance)值(UV254/DOC)將可降低約在15-18%及22-23%。AOC預測模式經相關性分析結果顯示,粒狀活性碳(Granular Activated Carbon, GAC)經模式訓練後之預測值與實際值R值較高(R2=0.772),而粉狀活性碳(Powder Activated Carbon, PAC)經模式訓練後之預測值與實際值R值較高(R2=0.856),PAC系統之AOC預測模式相關性稍高,可能是水質受到生活污水與農業肥料污染及畜牧排泄物污染。
在利用粉狀活性碳生物系統以去除消毒副產物方面,三鹵甲烷生成潛勢(Trihalomethanes Formation Potential, THMsFP)與鹵化乙酸生成潛勢(Haloacetic acids Formation Potential, HAAsFP)二者都有一定去除效能,出流水平均濃度分別都低於法規標準80μg/L,是可以降低致癌風險。SUVA對HAA5FP、HAA9FP、及THMsFP等3個水質濃度作相關性分析,其R2值分別為 0.805、0.820、0.823,表示具有高度相關。
在臭氧與氯對飲用水處理微生物之評估結果,高級與傳統淨水場對於微生物項目(大腸桿菌群與總菌落數)水質項目,皆可達到99%以上之去除效果。
在清洗頻率與水質參數之相關性分析方面,不論是100戶以上、99戶以下之集合式住宅與各級學校,蓄水池水塔清洗頻率對自來水水質有很大的影響,當清洗頻率越高(1年清洗4次以上),水質狀況愈佳。
Abstract
In response to organic contaminations pollutating water sources of drinking water, domestic water treatment plants (WTP) were transforming from traditional chlorination disinfecton method to advanced ozone-based disinfection processes. However, the effectiveness of water purification procedures n removing AOC (Assimilable Organic Carbon) and DBPsFP (Disinfection By-Products Formation Potential) can be improved. Additionally, the quality of clean water purified at WTP may deteriorate in the water distribution network for various reasons, primarily resulting from the regrowth of microorganisms in the water distribution pipelines.
This study investigates and researches the essential water quality items of effluent before and after the advanced water purification treatment plants and water movement to end users through water distribution networks. The investigation proceeded in four directions: (1) the efficiency of removing AOC from raw water using powdered and granular activated carbon biological systems, and the development of an AOC prediction model based on water quality monitoring items using the AutoNet (6.03) method of the artificial neural network system; (2) removal of the byproducts of disinfection from raw water using powdered activated carbon biological systems; (3) examining the relationship between ozone-based and chlorination-based water disinfection methods by comparing the number of coliform bacteria and total bacteria population in traditional and advanced processing units; (4) regarding the water distribution storage facilities for users, water reservoir towers were examined for water quality sampling and analysis and water tower cleaning frequencies. Regression analysis was performed using SPSS (Statistical Product and Service Solutions) statistical software, with the correlation coefficient denoting the closeness of relationships. We anticipate understanding the water quality situation for current users of tap water, and demands for cleaning frequencies, thereby achieving the purpose of improving drinking water safety.
Regarding the efficiency of removing AOC from raw water, the results showed powdered and granular activated carbon biological systems performed well, with the AOC removal rate reaching 53% and 54%, respectively, and the SUVA (Specific Ultraviolet Absorbance) value (showed by UV254/DOC) being reduced by 15-18% and 22-23%, respectively. The correlation analysis of the AOC prediction model shows that the GAC (Granular Activated Carbon) had high predictive and actual value R values (R2 = 0.772) after model regressing, and the PAC (Powder Activated Carbon) had higher predictive and actual value R values (R2 = 0.856) after model regressing as well. That the PAC system AOC prediction model has a slightly higher correlation that may be attributed to water contaminations resulting from domestic sewage, agricultural fertilizers, and livestock excretions.
In the use of powdered activated carbon biological systems to remove disinfection byproducts, THMsFP (Trihalomethanes Formation Potential) and HAAsFP (Haloacetic acids Formation Potential) functioned with a certain removal efficiency, with the average effluent concentrations being under the regulatory standard of 80μg/L, respectively, which reduces carcinogenic risks. Correlation analyses conducted using SUVA on the three water quality concentrations (HAA5FP, HAA9FP, and THMsFP) obtained R2 values of 0.805, 0.820, and 0.823, respectively, indicating high levels of correlation.
For the results of microbial assessment using ozone and chlorine to process drinking water, the advanced and conventional WTP achieved a removal rate greater than 99% for microbial removal (coliform bacteria and total bacteria population).
The correlation analysis between cleaning frequencies and water quality parameters showed the frequency at which the water reservoirs and towers were cleaned has a significant impact on tap water quality in residential compounds and schools that accommodated more than 100 households or less than 99 households. Higher cleaning frequency (more than four cleanings a year) results in better the water quality.
目次 Table of Contents
摘 要 iii
Abstract vi
目 錄 x
圖目錄 xvii
表目錄 xx
專有名詞中英對照表 xxii
第一章、前 言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容 2
第二章、文獻回顧 4
2-1 高雄市水源現況 4
2-2 坪頂、鳳山與澄清湖淨水場現況 6
2-2-1 坪頂淨水場現況 6
2-2-2 鳳山淨水場現況 7
2-2-3澄清湖淨水場現況 8
2-3 高級淨水處理程序 9
2-3-1 結晶軟化 10
2-3-2 臭氧 10
2-3-3 活性碳 15
2-3-4 薄膜 20
2-4 配水管網微生物再生長 26
2-5 配水管網微生物生長之影響因子 27
2-6 水中生物可分解有機質之測定方法比較 29
2-6-1生物可降解之有機碳(BDOC) 30
2-6-2生物可利用之有機碳(AOC) 32
2-5 生物可利用有機碳其他測定方法與比較 38
2-7淨水程序生成之消毒副產物 43
2-8加氯消毒副產物 44
2-8-1三鹵甲烷及三鹵甲烷生成潛勢 46
2-8-1-1三鹵甲烷之分類 46
2-8-1-2三鹵甲烷之來源 47
2-8-1-3三鹵甲烷生成因素 48
2-8-1-4三鹵甲烷之危害性質 52
2-8-1-5三鹵甲烷之法規管制標準 53
2-8-1-6三鹵甲烷之生成潛勢 54
2-8-2鹵化乙酸及鹵化乙酸生成潛勢 55
2-8-2-1鹵化乙酸之分類 55
2-8-2-2鹵化乙酸的來源 57
2-8-2-3鹵化乙酸生成因素 57
2-8-2-4鹵化乙酸之危害性質 61
2-8-2-5 鹵化乙酸之法規管制標準 61
2-8-2-6鹵化乙酸生成潛勢 62
2-9臭氧消毒副產物 63
2-10薄膜生物反應器 66
2-10-1 MBR種類與優點 67
2-10-2活性碳生物處理系統 69
2-11自來水與水塔水質現況與問題 70
第三章、研究方法 73
3-1實驗流程之規劃 73
3-2水質分析項目與方法 74
3-2-1水溫 76
3-2-2氫離子濃度指數(pH) 76
3-2-3導電度(COND) 76
3-2-4總溶解固體(TDS) 77
3-2-5總有機碳(TOC) 78
3-2-6溶解性有機碳(DOC) 78
3-2-7總三鹵甲烷(THMs) 78
3-2-8鹵化乙酸(HAA) 79
3-2-9三鹵甲烷生成潛勢(THMsFP) 79
3-2-10鹵化乙酸生成潛勢(HAA5FP與HAA9FP) 80
3-2-11總硬度(TH) 81
3-2-12硝酸鹽(NO3-) 82
3-2-13硫酸鹽(SO42-) 82
3-2-14自由有效餘氯 82
3-2-15大腸桿菌群 83
3-2-16總菌落數 83
3-2-17 UV254 83
3-2-18 SUVA 84
3-3生物可利用有機碳 84
3-3-1純菌菌液之預先培養 85
3-3-2菌種活化與培養 87
3-3-3菌種純種鑑定與特性分析 88
3-3-4 AOC器皿之清洗方式 91
3-3-5 AOC菌種生長曲線與產率之求得 91
3-3-6水樣AOC之檢測方式 96
3-4人工馴養微生物 98
3-4-1馴養使用的水源 98
3-4-2馴養使用的活性碳 98
3-4-3人工合成基質 99
3-5活性碳生物處理系統 100
3-6生物有機碳之預測模式建立 103
3-7相關性分析 104
第四章、結果與討論 106
4-1比較粒狀與粉狀活性碳生物系統對原水AOC之去除 106
4-1-1生物可利用有機碳之去除率 106
4-1-2溶解性有機碳之去除率 108
4-1-3 UV254之去除率 109
4-1-4 SUVA之去除率 110
4-1-5 水質之線性迴歸 112
4-1-6 AOC之預測模式 113
4-2以粉狀活性碳生物程序去除原水中消毒副產物 115
4-2-1 溶解性有機碳之去除率 115
4-2-2 UV254之去除率 117
4-2-3 SUVA之去除率 119
4-2-4三鹵甲烷生成潛勢之去除效率 119
4-2-5鹵化乙酸生成潛勢之去除效率 122
4-2-6 SUVA與消毒副產物潛勢之相關方程式 126
4-3臭氧與氯對飲用水處理微生物之評估 130
4-3-1淨水場中大腸菌群之去除率 130
4-3-2淨水場中總菌落數之去除率 131
4-4蓄水池水塔清洗頻率與水質參數之相關性分析 133
4-4-1高雄市100戶(含)以上集合式住宅 134
4-4-2高雄市99戶(含)以下集合式住宅 135
4-4-3高雄市30所學校 135
4-4-4綜合分析 136
第五章、結論與建議 137
5-1結論 137
5-1-1活性碳生物系統對原水AOC之去除 137
5-1-2活性碳生物程序去除原水中消毒副產物 137
5-1-3臭氧與氯對飲用水處理微生物之評估 138
5-1-4清洗頻率與水質參數之相關性分析 139
5-2建議 139
參考文獻 141
附錄A-1-1 高雄市100戶(含)以上集合式住宅蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗2至3次 158
附錄A-1-2 高雄市100戶(含)以上集合式住宅蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗4次(含)以上 159
附錄A-2-1 高雄市99戶(含)以下集合式住宅蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗2至3次 160
附錄A-2-2 高雄市99戶(含)以下集合式住宅蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗4次(含)以上 161
附錄A-3-1 高雄市各級學校蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗1次 162
附錄A-3-2 高雄市各級學校蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗2至3次 163
附錄A-3-3 高雄市各級學校蓄水池水塔各水質項目間相關性分析-清洗頻率:一年清洗4次(含)以上 164
附錄B 比較粒狀與粉狀活性碳生物系統之去除效率 165
附錄C 個人發表著作 170
口試委員意見答覆 173
參考文獻 References
Aimar, P., Pignon, F., Magnin, A., Piau, J.M. and Cabane B., (1998), “Structural characterisation of deposits formed during frontal filtration.” J. Mem. Sci., 174(2), pp. 189-204.
Amy, G.L., Collins M.R., Kuo, C.J., King, P.H., (1987), “Comparing GPC and UF on molecular weight characterizationof aquatic organic matter.” Jour. AWWA, 79, pp. 43-49.
Amy, G.L., Sierka, R.A., Bedssem, J., Prize, D. and Tan, Lo, (1992), “Molecular size distributions of dissolved organic matter.” Jour. AWWA., pp. 67-75.
Anselme, C., Mandra, V., Baudin, I. and Mallevialle, J., (1991), “Optimum use of membrane processes in drinking water treatment.” paper presented at the 19th IWSA Congress, Budapest, Hungary.
Arbuckle, T.E., Hrudey, S.E., Krasner, S.W., Nuckols, J.R., Richardson, S.D., Singer, P., Mendola, P., Dodds, L., Weisel, C., Ashley, D.L., Froese, K.L., Pegram, R.A., Schultz, I.R., Reif, J., Bachand, A.M., Benoit, F.M., Lynberg, M., Poole, C. and Waller, K., (2002), “Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop, environmental health perspectives.” Environ Health Perspect, 110(1), pp. 53-60.
Bank, J. and Wilson, D., (2002), “Low cost solution for trihalomethanes compliance, journal of the chartered institution of water and environmental management.” 16(4), pp. 264-269.
Bao M.L., Griffini O., Santianni D., Barbieri K., Durrini D. and Pantani F., (1999). "Removal of bromate ion from water using granular activated carbon.", Water Research, 33, pp. 2959-2970.
Batterman, S., Zhang, L., Wang, S., (2000), “Quenching of chlorination disinfection by-products formation in drinking water by hydrogen peroxide.” Water Research, 34(5), pp. 1652-1658.
Becker, W.C. and O`Mellia, C.R., (2001), “Ozone: its effect on coagulation and filtration.” Water Science and Technology: Water Supply, 1(4), pp. 81-88.
Boe-Hansen, R., Albrechtsen, H.J., Arvin, E. and Jorgensen, C., (2002), “Bulk water phase and biofilm growth in drinking water at low nutrient conditions.” Water Research, 36, pp. 4477-4486.
Bouland, S., Duguet, J.P., and Montiel, A., (2005), “Evaluation of bromate ions level introduced by sodium hypochlorite during post-disinfection of drinking water. ” Environmental Technology, 26 (2), pp.121-126.
Breitenbücher, K., (1990), "Open-pore in sintered glass as a high-efficiency support medium in bioreactors: new results and long-term experiences achieved in high-rate anaerobic digestion.", Water Science and Technology, 22, pp. 25-32.
Bryman, A. and Cramer, D., (2011), Quantitative Data Analysis With IBM SPSS 17, 18 & 19: A Guide for Social Scientists. Taylor & Francis.
Bull, R.J. and Kopfler, F.C., (1991), “Health effects of disinfectants and disinfection by-products.” Denver, CO: American Water Works Association Research Foundation.
Camel, V. and Bermon, A., (1998), “The use of ozone and associated oxidation process in drinking water treatment.” Water Research, 32(11), pp. 3208-3222.
Cantor, K.P., Lynch, C.F., Hildesheim, M.E., Dosemeci, M., Lubin, Alavanja, J. and Craun, G., (1998), “Drinking water source and chlorination by-products: I. risk of bladder cancer.” Epidemiology, 9(1), pp. 21-28.
Chang, M.C., Horng, R.Y., Shao, H., Hu, Y.J., (2006), “Performance and filtration characteristics of non-woven membranes used in submerged membrane bioreactor for synthetic wastewater treatment.” Desalination, 191(1-3), pp. 8-15.
Chang Y. and Benjamin M.M., (1996), “Iron oxide adsorption and UF to remove NOM and control fouling.” American Water Works Association Journal, 88(12), pp. 74-88.
Chang, Hui-Shien, (2004), “Analysis and distribution of haloacetic acids in drinking water of taiwan.” Master Thesis of National Taiwan University School of Public Health, Institute of Environmental Health.
Chen, P.H., Jenq, C.H. and Chen, K.M., (1996), “Evaluation of granular activated carbon for removal od trace organic compounds in drinking water.” Environment International, 22( 3), pp. 343-359.
Cheryan, M., (1998), “Ultrafiltration and microfiltration handbook.” Technomic Publishing Company, Lancaster, pp.46.
Chiang, P.C., (1987), “Activated carbon and activated carbon fiber adsorption and regeneration efficiency of volatile organic compounds I.” The Executive Yuan National Science Council Research Report, NSC76-0410-E002-23.
Christian J. Volk1, and Mark W. LeChevallier, (1999), “Impacts of the reduction of nutrient levels on bacterial water quality in distribution systems.” Appl. Environ. Microbiol., 65(11), pp. 4957-4966.
Christman R.F., Norwood D.L., Millington D.S., Johnson J.D. and Steven A.A., (1983), “Identity and yields of major halogenated products of aquatic fulvic acid chlorination.” Environmental Science and Technology, 17(10), pp. 625-628.
Dubinin, M.M., Plarnik, G.M., and Ezverina, E.F., (1964), “Integrated study of the porous structure of activated carbon from carbonized Source.” Carbon, 2, pp. 261-268.
Edwards, M. and Benjamin, M.M., (1992). “Effect of preozonation on coagulant-NOM interactions.” Journal of American Water Works Association, 84(8), pp. 63-72.
Escobar, I.C. and Randall, A.A., (2001). “Ozone and distribution system biostability.” Journal of American Water Works Association, 93(10), pp. 77-89.
Fan, F.S. and Zhou, H.D., (2007), “Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment.” Environmental Science and Technology, 41(7), pp. 2523-2528.
Fan, J.R., Zhuang, L.C., Tseng, D.H., Liao, S.L., Tour, S.J., Liang, D.M., (2009), “Membrane bioreactor (MBR) wastewater treatment technology assessment, prevention and control of industrial pollution, 109, pp. 49-96.
Fass, S., Block, J.C., Boualam, M., Gauthier, V., Gatel, D., Cavard, J., Benabdallah, S. and Lahoussine, V., (2003), “Release of organic matter in a discontinuously chlorinated drinking water network.” Water Research, 37, pp. 493-500.
Frias, J., Ribas, F. and Luchena, F., (1992), “ A method for the measurement of biodegradable organic carbon in water”, Water Research, 26(2), pp. 255-258.
Gai, X.J. and Kim, H.S., (2008), “The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment.” Desalination, 225, pp. 288-300.
Galapate, R.P., Augustianf, E., Baes, A.U. and Okada, M., (2001), “Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential.” Water Research, 35(9), pp. 2201-2206.
Gallard, H. and Gunten, U.V., (2002), “Chlorination of natural organic matter: kinetic of chlorination and of THM formation.” Water Research, 36, pp. 65-74.
Gibbs, R.A., Scutt, J.E. and Croll, B.T., (1993), “Assimilable organic carbon concentrations and bacterial numbers in a water distribution.” Water Science and Technology, 27(3-4), pp. 159-166.
Glaze, W.H., Weinberg, H.S. and Cavanagh, J.E., (1993), “Evaluating the formation of brominated DBPs during ozonation.” Journal of American Water Works Association, 85(1), pp. 96-103.
Goel, S.H., Raymond, M. and Bouwer, E.J., (1995), “Biodegradation of NOM: Effect of NOM source and ozone dose.” J.AWWA., 85(1), pp. 90-105.
Golfinopoulos, S.K., (2000), “The occurrence of trihalomethanes in the drinking water in Greece.” Chemosphere. 41, pp. 1761-1767.
Graham, N.J.D., Wardlaw, V.E., Perry, R. and Jiang, J.Q., (1998), “The significance of algae as trihalomethane precursors.” Water Science and Technology, 37, pp. 83-89.
Hascoer, M.C., Servais, P. and Billen, G., (1986), “Use of biological analytical methods to optimize ozonation and GAC filtration in surface water treatment. ” Proc. AWWA. Meet. Denver. CO.
Hofmann, R. and Andrews, R.C., (2001), “Ammoniacal Bromamines: A review of their influence on bromate formation during ozonation.” Water Research, 35(3), pp. 599-604.
Hsu, C.H., Jeng, W.L., Chang, R.M., Chien, L.C. and Han, B.C., (2001), “Estimation of potential lifetime cancer risk for trihalomethanes from consuming chlorinated drink water in Taiwan.” Environment Research, 85(2), pp. 77-82.
Hua, Y.H., Fu S.T., Xu, D.R., translation (1999), “Environmental engineering chemistry.” Fourth Edition, Taipei: Hill International, Inc., Translation Clair, N. Sawyer, Perry L. McCarty., pp. 635-639.
Huang, H., Lee, N.H., Young, T., Gary, A., Lozier, J.C. and Jacangelo, J.G., (2007), “Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions.” Water Research, 41(17), pp. 3823-3832.
Huck, P.M., (1990), “Measurement of biodegradable organic matter and bacterial growth potential in drinking water.” Jour. AWWA, 82(7), pp. 78-86.
Ivakhnenko, A.G. and Koppa, Y.V., (1969), “Stochastic algorithms and the group method of data handling in prediction of random events.” Soviet Automatic Control, 14(3), pp. 20-32.
Jacangelo, J.G., and Buckley, C.A., (1996),“ Microfiltration ” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore.
Jacangelo, J.G., Demarco, J., Owen, D.M., and Randtke, S.J., (1995), “Selected processes for removing NOM: an overview.” Journal American Water Supply Work Association, 87(1), pp. 64-77.
Jago P.H., Stanfield G., (1989), “ATP luminescence-rapid methods in ,microbiology (Stanly P.E., McCarthy B.J., Smither., editors).” Soc. Appl. Bacteriol, Tech. Series 26.
Jekel, M.R. (1998), “Effects and mechanisms involved in peroxidation and particle separation processes.” Water Science and Technology, 37(10), pp. 1-7.
Joret, J.C., Levi, Y., Dupin, T., and Gilbert, M., (1988), “Rapid methods for estimating bioliminable organic carbon in water.” Proceedings AWWA Annual Conference, Orlando, FL.
Joret, J.C., Levi, Y. and Volk, C., (1991), “Biodegradable dissolved organic carbon (BDOC) content of drinking water and potential regrowth of bacteria.” Water Science and Technology, 24(2), pp. 95-101.
Kaplan, L.A. and Bott, T.L., (1983), “Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream.” Freshwater Biology, 13, pp. 363-377.
Kaplan, L.A., Bott, T.L., Reasoner, D.J., (1993), “Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.”Appl. Envir. Microbial, 59(5), pp. 1532-1539.
Kemmy, F.A., Fry, J.C. and Breach, R.A., (1989), “Development and operational implementation of a modified and simplified method for determination of assimilable organic carbon (AOC) in drinking water.” Water Science and Technology, 21(3), pp. 155-159.
Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J.E., (2002), “Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation.” Water Research, pp. 3834-3848.
Korshin, G.V., Li, C.W. and Benjamin, M.M., (1997), “The decrease of UV absorbance as an indicator of TOX formation.” Water Research, 31(4), pp. 946-949.
Krasner, S.W., Glaze, W.H., Weinberg, H.S., Daniel, P.A. and Najm, I.N., (1993), “Formation and control of bromate during ozonation of water containing bromide.” Journal of American Water Works Association, 85(1), pp. 73-81.
Krasner S. W., J. P. Croue, J. Buffle, and E. M. Perdue, (1996), “Three approaches for characterizing NOM.” AWWA., 88(6), pp. 66-79.
Krasner, S.W., (1999), “Chemistry of disinfection by-products formation on formation and control of disinfection by-products in drinking water.” Chapter 2. American Water Works Association.
Kusakabe, K., Aso, S., Hayashi, J.I., Isomura K. and Morooka, S., (1990), “Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with U.V. irradiation.” Water Research, 24(19), pp. 781-785.
Lai, W.L., Yeh, H.H. and Tseng, I.C., (2006), “The effect of ozonation and filtration on AOC (Assimilable Organic Carbon) value of water from eutrophic Lake.” Ozone Science and Engineering, 28, pp. 29-35.
Laîne, J.M. and Anselme, C., (1995), “Ultrafiltration technology status overview in municipal drinking water.” Poster presented at the 20th Congress IWSA Conference, September 9-15, Durban, South Africa.
Langlais, B., Reckhow, D.A. and Brink, D.R., (1991), “Practical application of ozone. Ozone in water treatment : application and engineering. ” AWWA RF and Lewis Publishers, Chelsea, Michigan.
LeChevallier, M.W., (1990),“Coliform regrowth in drinking water:a reviewe.”Jour. AWWA., 82(11), pp. 74-86.
LeChevallier, M.W., Shaw, N.E., Kaplan, L.A. and Thomas L.B., (1993), “Development of a rapid assimilable organic carbon method for water.” Appl. Envir. Microbial, 59(5), pp. 1526-1531.
LeChevallier, M.W., (1999), “The case for maintaining a disinfectant residual.” Jour. AWWA, 91(1), pp. 86-94.
Le-Clech, P., Chen, V. and Fane, T.A.G., (2006), “Fouling in membrane bioreactors used in wastewater treatment.” Journal of Membrane Science, 284, pp. 17-53.
Lee C.I. and Yang, W.F., (2005), “Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.” Environmental Technology, 26(12), pp. 1345-1354.
Lee, S.H., O’Connor, J.T. and Banerji, S.K., (1980), “Biologically mediated corrosion and its effects on water quality in distribution systems.” Jour. AWWA, 72(11), pp. 636-645.
Levy, R.V., Hart, F.L. and Cheetham, R.D., (1986), “Occurrence and public health significance of invertebrates in drinking water systems.” Jour. AWWA., 78(9), pp. 105-110.
Li, X.Y. and Chu, H.P., (2003), “Membrane bioreactor for drinking water treatment of polluted surface water supplies.” Water Research, 37(19), pp. 4781-4791.
Liang, L, and Singer, P.C., (2003), “Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water.” Water Science and Technology, 37(13), pp. 2920-2928.
Liberti, L., Notarnicola, M., and Lopez, A., (2000), “Advanced treatment for municipal wastewater reuse in agriculture. III - ozone disinfection.” Ozone: Science & Engineering: The Journal of the International Ozone Association, 22( 2), pp. 151-166.
Lin, C.C., (1982), “Application of granular activated carbon for water and wastewater purification.” Ph.D. Dissertation, University of Texas at Dallas, USA.
Linder, R.E., Klinefelter, G.R. and Strader, L.F., (1997), “Spermatotoxicity of dichloroacetic acid. Reproductive toxicology.” 11(5), pp. 681-688.
Marhaba T.F. and Washington M.B., (1998), “Drinking water disinfection and byproducts: history and current practice, advances in environmental research.” 2(1), pp. 103-115.
Min-Chao Chang, Wen-Yuang Tzou, Shun-Hsing Chuang, Wang-Kuan Chang (2003), “Application of non-woven material in membrane bioreactor processes for industrial wastewater treatment.” 5th International Membrane Science and Technology Conference, Nov. 10-14, Sydney, Australia.
Mingquan Yan, Dongsheng Wang, Baoyou Shib, Min Wang and You Yanc, (2007), “Effect of pre-ozonation on optimized coagulation of a typical north-china source water.” Chemosphere, 69(11), pp. 1695–1702.
Mohamed, A.E. and Ali, R.K., (1995), “THMs formation during chlorination of raw NILE river water.” Water Research, 29, pp. 375-378.
Nieminski, E. and Evans, D., (1995), “Pilot testing of trace metals removal with ozone at snowbird ski resort.” Ozone Sci. Engng., 17, pp. 297-309.
Nikolaou A.D., Kostopoulou M.N. and Lekkas T.D., (1999), “Organic by-products of drinking water chlorination: a review.” Global Nest: Int J., 1(3), pp. 143-156.
Nishilima, W., Kim, W.H., Shoto, E. and Okada, M., (1998), “The performance of an ozonation-biological activated carbon process under long term operation.” Water Science and Technology, 38(6), pp. 163-169.
Pearce, G.K., Heijnen, M. and Reckhouse, J., (2002), “Using ultrafiltration membrane technology to meet UK cryptosporidium regulations.” Membrane Technology, 2002(1), pp. 6-9.
Reynolds, T.D. and P.A. Richards, (1996), “Unit operations and processes in environmental engineering.” 2nd ed., PWS Publishing Company.
Rice E.W. (1991), “Correlation of coilform growth response with other water quality parameters.” Jour. AWWA., 83(7), pp. 98-106.
Rittmann, B.E. and Snoeyink, V.L., (1984), “Achieving biologically stable drinking water.” Jour. AWWA, 76(10), pp. 106-114.
Rodriguez, M.J. and Serodes, J., (2001), “Spatial and temporal evolution of trihalomethanes in three water distribution system.” Water Research, 35, pp. 1572-1586.
Sagbo, O., Sun, Y.X., Hao, A.L. and Gu, P., (2008), “Effect of PAC addition on MBR process for drinking water treatment.” Separation and Purification Technology, 58(3), pp. 320-327.
Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J. and von Gunten, U. (2006). “Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes.” Ozone Sci. Eng., 28(4), pp. 237-245.
Scholler, M., van Dijk, J.C. and Wilms, D. (1991). “Fluidized bed pellet reactor to recover metals or anions.” Metal Finishing, 89(11), pp. 46-50.
Seo, G.T., Moon, C.D., Chang, S.W. and Lee, S.H., (2004), “Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment.” Water Science and Technology, 50(8), pp. 81-87.
Servais, P., Billen, G. and HascoëT, M.C.(1987) “ Determination of the biodegradable fraction of dissolved organic matter in waters.” Water Research, 21(4), pp. 445-450.
Servais, P., Cauchi, B. and Billen, G. (1996), “An evolutionary approach to activated carbon treatment.”J. Am. Water Works Assoc., 71(11), pp. 648-659.
Siddiqui, M.S. and Amy, G.L., (1993), “Factors affecting DBP foramtion during ozone-bromide reactions.” Journal of American Water Works Association, 85(1), pp. 63-72.
Siddiqui, M.S., Amy, G.L. and Rice, R.G., (1995), “Bromate ion formation: a critical review.” Journal of American Water Works Association, 87(10), pp. 58-70.
Singer, P.C., (1999), “Humic substance as precursors for potentially harmful disinfection by-products.” Water Science and Technology., 40(9), pp. 25-30.
Song, R., Westerhoof, P., Minear, R. and Amy, G.L., (1997), “Bromate minimization during ozonation.” Journal of American Water Works Association, 89(6), pp. 69-78.
States, S., Scheuring, M., Evens, R., Buzza, E., Movahed, B., Gigliotti, T., Casson, L., (2000), Membrane filtration as posttreatment.” J.AWWA., 92(8), pp. 59-68.
Stevens, A.A., Moore, L.A. and Miltner, R.J., (1989), “Formation and control of non trihalomethane disinfection by-products.” Journal American Water Works Association, 81(8), pp. 54-59.
Su, D.J. and Gao, N.Y., (2005), “A study of removing organic matters in slightly-polluted water by an ozone-active carbon combined process.” Ind.WaterWaste-water, 32, pp. 26-28.
Takahashi, M., Nakai, T., Satoh Y. and Katoh, Y., (1995), “Ozonolysis of humic acid and its effect on decoloration and biodegradability.” Ozone Sci. Engng., 17, pp. 511-525.
Te Welscher, R.A.G., Schellart, J.A. and de Visser, P.M., (1998),“Experience with fifteen years of drinking water distribution without a chlorine residual.”Paper presented at the Specialized Conference on Drinking Water Distribution With or Without Disinfectant Residua, Sep 28–30, Muleim and der Ruhr, Germany.
Tensel B., Bao W.Y., Tansel, I.N., (2000), “Characterization of fouling kinetics in ultrafiltration system by resistances in series model.” Desalination, 129, pp. 7-14.
Tian, J.Y., Liang, H., You, S.J., Tian, S. and Li ,G.B., (2008), “Membrane coagulation bioreactor (MCBR) for drinking water treatment.” Water Research, 42, pp. 3910-3920.
Trussell, R.R., and Posner, A.M., (1978), “Gel chromatography of humic acid.” J. Soil Sci., 22, pp. 237-317.
Trussell, R.R., Umphres, M.D., (1978), “The formation of trihalomethanes.” Journal AWWA. 70(11), pp. 604-612.
Tsai, H.H., Ravindran, V., Williams, M.D. and Pirbazari, M., (2004), “Forecasting the performance of membrane bioreactor process for groundwater denitrification.” Journal of Environmental Engineering and Science, 3(6), pp. 507-521.
Tseng, S.K., Liu C.Y., (1997), “Eutrophication of water disinfection by-products of tap water Proceedings of 16th volume.”pp. 35-46.
Urbansky, E.T. and Magnuson, M.L., (2002), “Analyzing drinking water for disinfection byproducts. Analytical Chemistry.” 5(1), pp. 261A-267A.
USEPA, (1993), “Guidance Manual for enhanced coagulation and enhanced precipitative softening, chapter 3 in D/DBP precursor removal processes.”
USEPA, (1998), “EPA finalizes M/DBP rules.” Waterweek 7(49), 1, 1998b.
USEPA, (1998), “Health risk assessment/characterization of the drinking water disinfection by-product bromate.” Office of Science and Technology. Office of Water. 13 March 1998. Quoted in the Federal Register 63(61), 15, pp. 673-15, 692. FR Document 98-8215, 1998a.
USEPA, (2001), “ Risk-based concentration table, USEPA, region III 841chestnut street, philadelphia, PA.”
USEPA, (2006), “Intergrated Risk Information System.”
van der Kooij, D., (1995), “Significance and assessment of the biological stability of drinking water.” The Handbook of Environmental Chemistry. J. Hrubec, 5, ed., Springer-Verlag, Berlin, Germany. pp. 89-102.
van der Kooij, D. and Veenendaal, H.R., (1995), “Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures.” SWE 95.002, KIWA, Nieuwegein, Netherlands.
van der Kooij, D., (1990), “Assimilable organic carbon (AOC) in drinking water.” in Drinking Water Microbiology, G.A. Mcfeter, ed., Springer-Verlag, New York.
van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. and Hiemstra, P., (1999), “Distributing drinking water without disinfectant highest achievement or height of folly?” Jour. Water SRT-Aqua., 48(1), pp. 31-37.
van der Kooij, D., Visser, A. and Hijnen, W.A.M., (1982), “Determining the concentration of easily assimilable organic carbon in drinking water.” Jour. AWWA, 74(10), pp. 540-545.
Villanueva, C.M., Kogevinas, M. and Grimalt, J.O., (2003), “Haliacetic acids and trihalomethanes in fished grinking waters from heterogeneous sources.” Water Research, 37, pp. 953-958.
von Gunten, U. and Hoigné, J., (1994), “Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions.” Environ. Sci. Technol., 28(7), pp. 1234-1242.
Wang, X.D., Wang, L., Liu, Y. and Duan, W.S., (2007), “Ozonation pretreatment for ultrafiltration of the secondary effluent.” Journal of Membrane Science, 287(2), pp. 187-191.
Wataru Nishijima, Fahmi, Tsukasa Mukaidani and Mitsumasa Okada, (2003), “DOC removal by multi-stage ozonation-biological treatment. ” Water Research, 37(1), pp. 150–154.
Weinrich L.A., Jjemba P.K., Giraldo E., LeChevallier M.W., (2010), “Implications of organic carbon in the deterioration of waterquality in reclaimed water distribution systems” Water Research, 44(18), pp. 5367-75.
Werner, P., Hambsch, B., (1986), “ Investigations on the growth of bacteria in drinking water.” Wat. Supply, 4, pp. 227-235.
Wierenga, J.T., (1985), “Recovery of coliforms in the presence of free chlorine residual.” Jour. AWWA, 77(11), pp. 83-88.
Wiesner, M.R. and Aptel, P., (1996), “Mass transfer and permeate flux and fouling in pressure-driven process.” Water Treatment Membrane Process, J. Mallevialle, P. E. Odendaal, and M. R. Wiesner, McGraw-Hill, Singapore.
Williams, D., LeBel, G.L. and Benoit, F., (1997), “Disinfection by-products in canadian drinking water.” Chemosphere, 34(29), pp. 299-316.
Xie, Y.F., (2004), “Disinfection by-products in drinking water: formation, analysis and control.” Lewish Publishers. USA.
Yamamoto K., (1994), “Membrane filtration in rapid filtration, biological filtration and membrane filtration.” Gihodo Shuppan, Tokyo, pp. 255.
Youa, S.H., Tsengb D.H. and Hsu, W.C., (2007), “Effect and mechanism of ultrafiltration membrane fouling removal by ozonation.” Desalination , 202(1–3), pp. 224–230.
Zhang, M.M., Li, C., Benjamin, M.M. and Chang, Y.J., (2003), “Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment.” Environmental Science and Technology, 37(8), pp. 1663-1669.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code