Responsive image
博碩士論文 etd-0708112-224115 詳細資訊
Title page for etd-0708112-224115
論文名稱
Title
金屬光散射層及光導元件在染料敏化太陽能電池之應用研究
Applied Studies of Metal-Based Light Scattering Layer and External Lightguide on Dye-Sensitized Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-30
繳交日期
Date of Submission
2012-07-08
關鍵字
Keywords
染料敏化太陽能電池、金屬光散射層、外部光導元件、黑色對電極、光捕獲效率
dye-sensitized solar cell, metal-based light scattering layer, black counter electrode, external lightguide, light harvesting efficiency
統計
Statistics
本論文已被瀏覽 5654 次,被下載 135
The thesis/dissertation has been browsed 5654 times, has been downloaded 135 times.
中文摘要
為降低染料敏化太陽能電池之製造成本,遂有使用黑色對電極及薄化光電極之染料敏化太陽能電池被提出。而上述染料敏化太陽能電池雖可有效降低製造成本,卻因光捕獲效率不佳而呈現較差之光電轉換效能。有鑒於此,本研究提出一種新的金屬光散射層,其係可形成於染料敏化太陽能電池之黑色對電極上,亦可形成於染料敏化太陽能電池之薄化光電極上,用以反射穿透薄化光電極之光。金屬光散射層可從電池內部提升光捕獲效率,進而提升染料敏化太陽能電池之光電轉換效能。實驗結果證實使用金屬光散射層可有效降低電池內阻及增加電子收集效率,且最高可提升電池轉換效率116%。
本研究另設計一種低成本之外部光導元件,其係設置於染料敏化太陽能電池之光電極的外部,用以將未被有效利用的光導引至光電極之染料敏化二氧化鈦膜上。外部光導元件可從電池外部提升光捕獲效率,進而提升染料敏化太陽能電池之光電轉換效能。實驗結果證實使用外部光導元件可提升光捕獲效率30.69%,並相應地提升光電流密度38.12%及電池轉換效率25.09%。
Abstract
Dye-sensitized solar cells (DSSCs), based on use of a black counter electrode (BCE) and thin TiO2 electrode (photoelectrode), have been developed to reduce related manufacturing costs. Despite their effectiveness in lowering manufacturing cost, the above DSSCs have a low photovoltaic performance, owing to their insufficient light harvesting efficiency.
This work presents a novel metal-based light scattering layer (MLSL), which can be formed either on a black counter electrode or on a thin TiO2 electrode, to reflect the light passing through the latter. The proposed MLSL increases the light harvesting efficiency from the interior of the cell, thus enhancing the photovoltaic performance of DSSC. Experimental results indicate that the proposed MLSL also reduces the internal resistance, as well as increases the electron collection efficiency of DSSC, subsequently increasing the power conversion efficiency by 116%.
This work also designs a low-cost external lightguide (EL), which is disposed on the exterior of photoelectrode of DSSC, to direct light towards the dye-covered nanoporous TiO2 film (D-NTF) of the photoelectrode. Incorporating EL can increase the light harvesting efficiency from the exterior of the cell, thus enhancing the photovoltaic performance of DSSC. Furthermore, in addition to increasing the light harvesting efficiency by 30.69%, the proposed EL increases the photocurrent density by 38.12% and power conversion efficiency by 25.09%.
目次 Table of Contents
論文審定書 ……………………………………………………………… i
誌謝 …………………………………………………………….….…… ii
摘要 …………………………………………………………….….…… iii
Abstract ………………………………………..……………………… iv
Contents …………………………………..………………….…… v
List of Figures ……………………………………………………… ix
List of Tables ……………………………………………………… xiii
Nomenclature ………………………………………………….… xiv

Chapter 1 Introduction …………………………………………………1
1.1 Background …………………………….…………………….…1
1.2 Review of Literatures ……………………………………………2
1.2.1 Dye-Sensitized Solar Cells (DSSCs)………………………2
1.2.1.1 A Brief History…………………………………………2
1.2.1.2 Basic Structure and Operation Principles ……..……….2
1.2.1.3 Major Parameters …….…..…………………………….6
1.2.1.4 Characterization Approaches ...………..……………….7
1.2.2 Light Harvesting on Counter Electrode ……………………7
1.2.3 Light Harvesting on Photoelectrode ………………………8
1.2.4 Light Wasted on Sealing Spacer ………………………9
1.3 Aims and Objectives ……...…….……………………………10
1.4 Dissertation Structure …………………………………………11
Chapter 2 Metal-based Light Scattering Layer (MLSL) on Black Counter Electrode …………………………………………16
2.1 Introduction …………………………………………………16
2.2 Experimental Section ………………………………………17
2.2.1 Experimental Materials …………………………………17
2.2.2 Preparation of Al@SiO2 Core-Shell Microflakes ………17
2.2.3 Preparation of Black Counter Electrode …………………18
2.2.4 Black Counter Electrode with MLSL ……………………18
2.2.5 Preparation of TiO2 Electrode and Assembly of DSSCs ………….………………………………………19
2.2.6 Measurements of DSSCs …………………………………19
2.3 Results and Discussion ……………………………………20
2.3.1 Characterizations…………………………………………20
2.3.2 Diffused Reflectance Spectra Analysis …………………21
2.3.3 Photovoltaic Performance Measurements ………………21
2.3.4 Electrochemical Impedance Spectra Analysis …………22
Chapter 3 Metal-based Light Scattering Layer (MLSL) on Photoelectrode ……………………………………………42
3.1 Introduction …………………………………………………42
3.2 Experimental Section ………………………………………42
3.2.1 Experimental Materials …………………………………42
3.2.2 TiO2 Electrode with MLSL ……………………………43
3.2.3 TiO2 Electrode with TiO2-based Light Scattering Layer (TLSL) ………….………………………………………44
3.2.4 Preparation of Graphite/Pt Counter Electrode …………44
3.2.5 Assembly and Measurements of DSSCs ………………44
3.3 Results and Discussion ……………………………………45
3.3.1 Characterizations…………………………………………45
3.3.2 Transmittance Spectra Analysis …………………………46
3.3.3 Photovoltaic Performance Measurements ………………46
3.3.4 Electrochemical Impedance Spectra Analysis …………46
Chapter 4 External Lightguide (EL) on DSSCs ………………………65
4.1 Introduction …………………………………………………65
4.2 EL Design……………………………………………………65
4.3 EL Fabrication ………………………………………………68
4.4 Measurement of Light Harvesting Efficiency ………………69
4.5 Preparation of DSSC …………………………………………70
4.6 Photovoltaic Measurements of DSSC with and without EL …70
Chapter 5 Conclusions and Future Prospects ………………………84
5.1 Conclusions …………………………………………………84
5.2 Future Prospects ……………………………………………85
References …………………………………………….…….…………87
VITA ……………………………………………………………….…...96
參考文獻 References
[1] B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 1991, 353(6346), pp737-740.

[2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, 1993, 115(14), pp6382-6390.

[3] M. Dürr, A. Bamedi, A. Yasuda, and G. Nelles, “Tandem dye-sensitized solar cell for improved power conversion efficiencies,” Applied Physics Letters, 2004, 84(17), pp3397-3399.

[4] Y. Yoshida, S. Tokashiki, K. Kubota, R. Shiratuchi, Y. Yamaguchi, M. Kono, and S. Hayase, “Increase in photovoltaic performances of dye-sensitized solar cells—Modification of interface between TiO2 nano-porous layers and F-doped SnO2 layers,” Solar Energy Materials & Solar Cells, 2008, 92(6), pp646-650.

[5] L. Han, A. Fukui, Y. Chiba, A. Islam, R. Komiya, N. Fuke, N. Koide, R. Yamanaka, and M. Shimizu, “Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%,” Applied Physics Letters, 2009, 94(1), 013305.

[6] R.Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki, and K. Noda, “High-performance dye-sensitized solar cell with a multiple dye system,” Applied Physics Letters, 2009, 94(7), 073308.

[7] T. Yamaguchi, Y. Uchida, S. Agatsuma, and H. Arakawa, “Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%,” Solar Energy Materials & Solar Cells, 2009, 93(6-7), pp733-736.

[8] Y. Chiba, A. Islam, R. Komiya, N. Koide, and L. Han, “Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze,” Applied Physics Letters, 2006, 88(22), 223505.

[9] P. Wang, C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, and M. Grätzel, “Stable ≧8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility,” Applied Physics Letters, 2005, 86(12), 123508.

[10] R.D. McConnell, “Assessment of the dye-sensitized solar cell,” Renewable and Sustainable Energy Reviews, 2002, 6(3), pp273-295.

[11] M.M. Gómez, J. Lu, E. Olsson, A. Hagfeldt, and C.G. Granqvist, “High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films,” Solar Energy Materials & Solar Cells, 2000, 64(4), pp385-392.

[12] V. Dhas, S. Muduli, W. Lee, S.H. Han, and S. Ogale, “Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles,” Applied Physics Letters, 2008, 93(24), 243108.

[13] W. Sun, X. Sun, T. Peng, Y. Liu, H. Zhu, S. Guo, and X. Zhao, “A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells,” Journal of Power Sources, 2012, 201, pp402- 407.

[14] G. Marsh, “Can dye sensitised cells deliver low-cost PV?,” Renewable Energy Focus, 2008, 9(5), pp58-62.

[15] H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochimica Acta, 2009, 54(4), pp1319-1324.

[16] A. Kay and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Solar Energy Materials & Solar Cells, 1996, 44(1), pp99-117.

[17] D. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grätzel, S.M. Zakeeruddin, and M. Grätzel, “High-efficiency and stable mesoscopic dye-Sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte,” Advanced Materials, 2007, 19(8), pp 1133-1137.

[18] P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, and J.M. Kroon, “Long-term stability testing of dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp137-144.

[19] W. Wu, J. Li, F. Guo, L. Zhang, Y. Long, and J. Hua, “Photovoltaic performance and long-term stability of quasi-solid-state fluoranthene dyes-sensitized solar cells,” Renewable Energy, 2010, 35(8), pp1724-1728.

[20] H. Pettersson and T. Gruszecki, “Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods,” Solar Energy Materials & Solar Cells, 2001, 70(2), pp203-212.

[21] M. Grätzel, “Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells,” Comptes Rendus Chimie, 2006, 9(5), pp578-583.

[22] A. Yella, H.W. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E.G. Diau, C.Y. Yeh, S. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, 2011, 334(6056), pp629-634.

[23] J. Wan, Y. Lei, Y. Zhang, Y. Leng, and J. Liu, “Study on TiO2 photoelectrode to improve the overall performance of dye-sensitized solar cells,” Electrochimica Acta, 2012, 59, pp75-80.


[24] A. Kim and M. Kang, “High efficiency dye-sensitized solar cells based on multilayer stacked TiO2 nanoparticle/nanotube photoelectrodes,” Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, pp20-23.

[25] S.H. Kang, J.Y. Kim, H.S. Kim, H.D. Koh, J.S. Lee, and Y.E. Sung, “Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell,” Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200(2-3), pp294-300.

[26] J.H. Park, S.Y. Jung, R. Kim, N.G. Park, J. Kim, and S.S. Lee, “Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells,” Journal of Power Sources, 2009, 194(1), pp574-579.

[27] Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coordination Chemistry Reviews, 2004, 248(13-14), pp1381-1389.

[28] J.T. Park, D.K. Roh, R. Patel, K.J. Son, W.G. Koh, and J.H. Kim, “Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells,” Electrochimica Acta, 2010, 56(1), pp68-73.

[29] J.T. Park, D.K. Roh, W.S. Chi, R. Patel, and J.H. Kim, “Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells,” Journal of Industrial and Engineering Chemistry, 2012, 18(1), pp449-455.

[30] R. Hattori and H. Goto, “Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode,” Thin Solid Films, 2007, 515(20-21), pp8045-8049.

[31] C.S. Chou, R.Y. Yang, M.H. Weng, and C.H. Yeh, “Study of the Applicability of TiO2/Dye Composite Particles for a Dye-Sensitized Solar Cell,” Advanced Powder Technology, 2008, 19(6), pp541-558.

[32] C.S. Chou, R.Y. Yang, M.H. Weng, and C.H. Yeh, “Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell,” Powder Technology, 2008, 187(2), pp181-189.

[33] X. Zhang, J.J. Zhang, and Y.Y. Xia, “A comparative theoretical investigation of ruthenium dyes in dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2-3), pp283-288.

[34] K.J. Hwang, S.H. Jung, D.W. Park, S.J. Yoo, and J.W. Lee, “Heterogeneous ruthenium dye adsorption on nano-structured TiO2 films for dye-sensitized solar cells,” Current Applied Physics, 2010, 10(2), ppS184-S187.

[35] Y. Jo, C. Jung, J. Lim, B.H. Kim, C.H. Han, J. Kim, S. Kim, D. Kim, and Y. Jun, “A novel dye coating method for N719 dye-sensitized solar cells,” Electrochimica Acta, 2012, 66, pp121-125.

[36] K.J. Hwang, W.G. Shim, S.Ho. Jung, S.J. Yoo, and J.W. Lee, “Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell,” Applied Surface Science, 2010, 256(17), pp5428-5433.

[37] T. Horiuchi, H. Miura, and S. Uchida, “Highly efficient metal-free organic dyes for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp29-32.

[38] J. Heo, J.W. Oh, H.I. Ahna, S.B. Lee, S.E. Cho, M.R. Kim, J.K. Lee, and N. Kim, “Synthesis and characterization of triphenylamine-based organic dyes for dye-sensitized solar cells,” Synthetic Metals, 2010, 160(19-20), pp2143-2150.

[39] X. Cheng, S. Sun, M. Liang, Y. Shi, Z. Sun, and S. Xue, “Organic dyes incorporating the cyclopentadithiophene moiety for efficient dye-sensitized solar cells,” Dyes and Pigments, 2012, 92(3), pp1292-1299.

[40] Z. Kong, H. Zhou, J. Cui, T. Ma, X. Yang, and L. Sun, “A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213(2-3), pp152-157.

[41] S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, 2006, 80(2), pp209-214.

[42] H. Zhou, L. Wu, Y. Gao, and T. Ma, “Dye-sensitized solar cells using 20 natural dyes as sensitizers,” Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219(2-3), pp188-194.

[43] S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, and S.Yamauchi, “Characteristics of dye-sensitized solar cells using natural dye,” Thin Solid Films, 2009, 518(2), pp526-529.

[44] K. Wongcharee, V. Meeyoo, and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials & Solar Cells , 2007, 91(7), pp566-571.

[45] R.Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki, and K. Noda, “High-performance dye-sensitized solar cell with a multiple dye system,” Applied Physics Letters, 2009, 94(7), 073308.

[46] F. Inakazu, Y. Noma, Y. Ogomi, and S. Hayase, “Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength,” Applied Physics Letters, 2008, 93(9), 093304.

[47] E.V.A. Premalal and P.M. Sirimanne, “Sensitization process of two organic dyes anchored on titania films in photo-voltaic cells,” Solar Energy, 2009, 83(5), pp696-699.

[48] Q. Dai, D.B. Menzies, D.R. MacFarlane, S.R. Batten, S. Forsyth, L. Spiccia,Y.B. Cheng, and M. Forsyth, “Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes,” Comptes Rendus Chimie, 2006, 9(5-6), pp617-621.

[49] L. Bay, K. West, B. Winther-Jensen, and T. Jacobsen, “Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system,” Solar Energy Materials & Solar Cells, 2006, 90(3), pp341-351.

[50] T. Oda, S. Tanaka, and S. Hayase, “Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model,” Solar Energy Materials & Solar Cells, 2006, 90(16), pp2696-2709.

[51] A. Hauch and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cell,” Electrochimica Acta, 2001, 46(22), pp3457-3466.

[52] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe, and M. Watanabe, “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp87-92.

[53] M. Wang, X. Yin, X.R. Xiao, X.W. Zhou, Z.Z. Yang, X.P. Li, and Y. Lin, “A new ionic liquid based quasi-solid state electrolyte for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(1), pp20-26.

[54] R. Komiya, L. Han, R. Yamanaka, A. Islam, and T. Mitate, “Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp123-127.

[55] P.J. Li, J.H. Wu, M.L. Huang, S.C. Hao, Z. Lan, Q. Li, and S. Kang, “The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature,” Electrochimica Acta, 2007, 53(2), pp903-908.

[56] J. Park, K. Choi, S. Kang, Y. Kang, J. Kim, and S. Lee, “Solid-state oligomer electrolyte with amine–acid interaction for dye-sensitized solar cells,” Journal of Power Sources, 2008, 183(2), pp812-816.

[57] X. Yin, W. Tan, W. Xiang, Y. Lin, J. Zhang, X. Xiao, X.Li, X. Zhou, and S. Fang, “Novel chemically cross-linked solid state electrolyte for dye- sensitized solar cells,” Electrochimica Acta, 2010, 55(20), pp5803-5807.

[58] X. Fang, T. Ma, G. Guan, M. Akiyama, and E. Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp179-182.

[59] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” Journal of Electroanalytical Chemistry, 2004, 570(2), pp257-263.

[60] C.C. Yang, H.Q. Zhang, and Y.R. Zheng, “DSSC with a novel Pt counter electrodes using pulsed electroplating techniques,” Current Applied Physics, 2011, 11(1), ppS147-S153.

[61] C.H. Tsai, S.Y. Hsu, C.Y. Lu, Y.T. Tsai, T.W. Huang, Y.F. Chen, Y.H. Jhang, and C.C. Wu, “Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells,” Organic Electronics, 2012, 13(1), pp199-205.

[62] L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang, and Y. Lin, “Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells,” Electrochimica Acta, 2010, 55(11), pp3721-3726.

[63] T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A.S. Arico’, F. Matteucci, and R. Ornelas, “Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells,” Journal of Applied Electrochemistry, 2009, 39(11), pp2173-2178.

[64] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, 2003, 79(4), pp459-469.

[65] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells,” Electrochemistry Communications, 2007, 9(4), pp596-598.

[66] G. Wang, W. Xing, and S. Zhuo, “Application of mesoporous carbon to counter electrode for dye-sensitized solar cells,” Journal of Power Sources, 2009, 194(1), pp568-573.

[67] P. Srinivasu, S.P. Singh, A. Islam, and L. Han, “Metal-free counter electrode for efficient dye-sensitized solar cells through high surface area and large-porous carbon,” International Journal of Photoenergy, 2011, 2011, 617439.

[68] W.J. Lee, E. Ramasamy, D.Y. Lee, and J.S. Song, “Performance variation of carbon counter electrode based dye-sensitized solar cell,” Solar Energy Materials & Solar Cells, 2008, 92(7), pp814-818.

[69] K.P. Acharya, H. Khatri, S. Marsillac, B. Ullrich, P. Anzenbacher, and M. Zamkov, “Pulsed laser deposition of graphite counter electrodes for dye-sensitized solar cells,” Applied Physics Letters, 2010, 97(20), 201108.

[70] Y.S. Wei, Q.Q. Jin, and T.Z. Ren, “Expanded graphite/pencil-lead as counter electrode for dye-sensitized solar cells,” Solid-State Electronics, 2011, 63(1), pp76-82.

[71] K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, “100 mm × 100 mm large-sized dye sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp193-198.

[72] W. Kubo, A. Sakamoto, T. Kitamura, Y. Wada, and S. Yanagida, “Dye-sensitized solar cells: improvement of spectral response by tandem structure,” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3), pp33-39.

[73] G. Calogero and G.D. Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, 2008, 92(11), pp1341-1346.

[74] A.D. Pasquier, H. Chen, and Y. Lu, “Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays,” Applied Physics Letters, 2006, 89(25), 253513.

[75] E. Stathatos, Y. Chen, and D.D. Dionysiou, “Quasi-solid-state dye-sensitized solar cells employing nanocrystalline TiO2 films made at low temperature,” Solar Energy Materials & Solar Cells, 2008, 92(11), pp1358-1365.

[76] L. Han, N. Koide, Y. Chiba, and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells,” Applied Physics Letters, 2004, 84(13), pp2433-2435.

[77] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, “Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy,” Solar Energy Materials & Solar Cells, 2005, 87(1-4), pp117-131.

[78] J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer,” The Journal of Physical Chemistry B, 2002, 106(2), pp325-333.

[79] T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, “Impedance analysis for dye-sensitized solar cells with a three-electrode system,” Journal of Electroanalytical Chemistry, 2005, 577(2), pp339-348.

[80] M. Zistler, P. Wachter, C. Schreiner, M. Fleischmann, D. Gerhard, P. Wasserscheid, A. Hinsch, and H.J. Gores, “Temperature dependent impedance analysis of binary ionic liquid electrolytes for dye-sensitized solar cells,” Journal of The Electrochemical Society, 2007, 154(9), ppB925-B930.

[81] L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, and R. Yamanaka, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance,” Applied Physics Letters, 2005, 86(21), 213501.

[82] N. Koide, A. Islam, Y. Chiba, and L. Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit,” Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182(3), pp296-305.

[83] Q. Wang, J.E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” Journal of Physical Chemistry B, 2005, 109(31), pp14945-14953.

[84] T. Hoshikawa, T. Ikebe, R. Kikuchi, and K. Eguchi, “Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy,” Electrochimica Acta, 2006, 51(25), pp5286-5294.

[85] D.K.P. Wong, C.H. Ku, Y.R. Chen, G.R. Chen, and J.J. Wu, “Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells,” ChemPhysChem, 2009, 10(15), pp2698-2702.

[86] L. Yong, S. Hui, H. Xiaorui, and D. Youjun, “A new improved structure of dye-sensitized solar cells with reflection film,” Chinese Science Bulletin, 2006, 51(3), pp369-373.

[87] W.W. Ji, X.D. Zhang, Y. Zhao, Z.H. Yang, N. Cai, C.C. Wei, J. Sun, and S.Z. Xiong, “A new structure of counter electrode used for dye-sensitized solar cells,” Physica Status Solidi (c), 2010, 7(3-4), pp1124-1127.

[88] J.Y. Lee, S. Lee, J.K. Park, Y. Jun, Y.G. Lee, K.M. Kim, J.H. Yun, and K.Y. Cho, “Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror,” Optics Express, 2010, 18(S4), ppA522-A527.

[89] S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, 2006, 18(9), pp1202-1205.

[90] Y. Tachibana, H.Y. Akiyama, and S. Kuwabata, “Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications,” Solar Energy Materials & Solar Cells, 2007, 91(2-3), pp201-206.

[91] S. Ito, M.K. Nazeeruddin, S.M. Zakeeruddin, P. Péchy, P. Comte, M. Grätzel, T. Mizuno, A. Tanaka, and T. Koyanagi, “Study of dye-sensitized solar cells by scanning electronMicrograph observation and thickness optimization of porous TiO2 electrodes,” International Journal of Photoenergy, 2009, 2009, 517609.

[92] J.K. Lee, B.H. Jeong, S. Jang, Y.G. Kim, Y.W. Jang, S.B. Lee, and M.R. Kim, “Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells,” Journal of Industrial and Engineering Chemistry, 2009, 15(5), pp724-729.

[93] H.J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.G. Park, “Size-dependent scattering efficiency in dye-sensitized solar cell,” Inorganica Chimica Acta, 2008, 361(3), pp677-683.

[94] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Solar Energy Materials & Solar Cells, 2006, 90(9), pp1176-1188.

[95] W.J. Lee, E. Ramasamy, D.Y. Lee, and J.S. Song, “Grid type dye-sensitized solar cell module with carbon counter electrode,” Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(1), pp27-30.

[96] E. Ramasamy, W.J. Lee, D.Y. Lee, and J.S. Song, “Portable, parallel grid dye-sensitized solar cell module prepared by screen printing,” Journal of Power Sources, 2007, 165(1), pp446-449.

[97] N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano, and T. Toyoda, “Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition,” Solar Energy Materials & Solar Cells, 2009, 93(6-7), pp893-897.

[98] S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong, and K. Wang, “Dye-sensitized solar cells, from cell to module,” Solar Energy Materials & Solar Cells, 2004, 84(1-4), pp125-133.

[99] W.J. Lee, E. Ramasamy, D.Y. Lee, and J.S. Song, “Dye-sensitized solar cells: Scale up and current–voltage characterization,” Solar Energy Materials & Solar Cells, 2007, 91(18), pp1676-1680.

[100] W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid and Interface Science, 1968, 26(1), pp62-69.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code