Responsive image
博碩士論文 etd-0708113-152329 詳細資訊
Title page for etd-0708113-152329
論文名稱
Title
利用PS-b-P2VP嵌段共聚合物於薄膜中製備不同微結構之光子晶體
Fabrications of Photonic Crystals with Various Microstructures in Polystyrene-block- Poly(2-vinylpyridine) Block Copolymer Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-08
關鍵字
Keywords
嵌段共聚物、雙連續相結構、自組裝、光子晶體、六角堆積之對穿層結構、相轉換
HPL, phase transition, gyroid morphology, self-assembly, block copolymer, photonic crystal
統計
Statistics
本論文已被瀏覽 5707 次,被下載 193
The thesis/dissertation has been browsed 5707 times, has been downloaded 193 times.
中文摘要
在本篇文章,我們利用嵌段共聚合物(BCP) PS-P2VP去製備層板、柱狀、雙連續相、六角堆積之對穿層結構(HPL)為結構之光子晶體薄膜( photonic crystal)。 在塊材的情況下,由1,2-二氯乙烷得到的穿隧式電子顯微鏡圖像(TEM)顯示大分子量的PS-P2VP為柱狀結構但相反的在小分子量PS-P2VP從二氯甲烷得到的卻是雙連續相結構(gyroid morphology)。由於在PS和P2VP有不同的溶劑選擇效應,不同的微結構可以在初始型態的薄膜上得到。由於P2VP上的氮會形成強烈的作用力導致在PGMEA、THF、chlorobenzene的初始薄膜,因為P2VP差的溶解度形成P2VP鏈長被PS包覆住的微胞結構。我們也發現一個有趣的現象,初始薄膜為雙連續相的結構,可以在含氯的溶劑,例如chloroform, 1,1,2-trichloroethane, 和 1, 2-dichloroethane得到。因為會與P2VP上氮形成質子化的反應,藉此可以增加P2VP的溶解度。進一步可以從TEM和grazing-incidence ultra-small angle X-ray scattering也可以證明內部微結構為一個雙連續相結構。當使用溶劑退火時候,我們可以發現一些有趣的相行為在PS-P2VP薄膜中。經過利用toluene做溶劑退火,因為P2VP有差的溶解度,形成了P2VP被PS包住的微胞結構。相反地,利用較選擇PS的溶劑,例如: 1, 1, 2-trichloroethane (TCE) 或 chloroform,微胞結構或雙連續相結構可以產生相轉換,。於是,大範圍的層板結構平行於玻璃基板可以因為基材與溶劑誘導效應得到。利用TCE做溶劑退火,可以在PS-P2VP薄膜中得到相轉換從雙連續相到HPL微結構。
利用乙醇會選擇性地去膨潤PS-P2VP薄膜中的P2VP部分,導致在紫外光可見光(UV-vis)光譜中光子晶體有紅位移的產生。從UV-vis光譜中雙連續相的PS-P2VP光子晶體存在特別的溶劑反應行為,利用波長特徵峰√6 ∶ √8 可以得到有效的證明。比較令人驚訝地,由HPL形成的BCP光子晶體在UV-vis光譜中可以顯現出很多根的特徵峰而且特徵峰涵蓋整個可見光的範圍。
最後,利用BCP的自組裝行為(self-assembly),可以有效地得到不同的微結構,而利用這些微結構可以得到不同特性的光子晶體薄膜,由於不同的微結構伴隨的光學性質也不盡相同,也可以產生不同的應用。
Abstract
In this study, the fabrication of block copolymer (BCP) photonic crystals with different microstructures including lamella, cylinder, gyroid and hexagonally perforated layer are conducted from the self-assembly of polystyrene-b-poly (2-vinyl pyridine) (PS-P2VP) BCP thin films. Transmission electron microscope (TEM) micrograph of high-molecular-weight PS-P2VP shows cylinder morphology from 1, 2-dichloroethane whereas low-molecular-weight PS-P2VP exhibits gyroid morphology form dichloromethane in bulk. Owing to the difference of solvent selectivity for PS and P2VP, various morphologies are obtained in as-spun PS-P2VP BCP thin films. Owing to poor solubility for P2VP resulted from strong interaction among pendent pyridines, the P2VP chains easily form micelles in the PS matrix in the as-spun PS-P2VP BCP thin films from PGMEA, THF, and chlorobenzene. Interestingly, the chloride-containing solvents such as chloroform, 1,1,2-trichloroethane, and 1, 2-dichloroethane may form protonation with pyridine so as to enhance the solubility for P2VP, such that microphase-separated gyroid morphology can be observed in the as-spun BCP thin films as evidenced by TEM and the grazing-incidence ultra-small angle X-ray scattering. By solvent annealing, interesting phase behaviors of the PS-P2VP BCP thin films can be found. After solvent annealing by toluene, P2VP micelles in the PS matrix can be obtained due to poor solubility for P2VP. By contrast, phase transitions from the as-spun micelle or gyroid to lamellae can be found after solvent annealing by PS-selective solvents such as 1, 1, 2-trichloroethane (TCE) or chloroform. Accordingly, large-area lamellar microstructures with parallel orientation to glass substrate can be accomplished due to substrate- and solvent-induced microstructural orientation. Most interestingly, a phase transition from the as-spun gyroid to well-oriented hexagonally perforated layer (HPL) phase can be obtained in the PS-P2VP BCP thin film after solvent annealing by TCE.
By absorption of ethanol, the selective swelling of the P2VP microdomian in the PS-P2VP BCP thin film may give significant red shift of the reflective wavelength, such that photonic bandgaps in visible spectrum can be carried out. The UV-Vis spectra of the gyroid-forming PS-P2VP photonic crystal exhibits unique solvatochromic behavior by absorption of ethanol, as evidenced by the characteristic reflective wavelength ratio of √6 ∶ √8 . Surprisingly, the HPL-forming BCP photonic crystal reveals that the multiple reflectivity bands cover whole visible spectrum with the accompanying decrease of reflective intensity, resulting in white reflective color mixed with purple. As a result, the BCP photonic reflectors with various microstructures can be fabricated from the self-assembly of the PS-P2VP BCP thin films. The significantly different optical properties associated with the microstructural shapes are promising to be applied in various applications.
目次 Table of Contents
摘要 i
Abstract iii
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1. Introduction 1
1.1 Block Copolymer Properties 1
1.1.1 Block Copolymer (BCP) Self-assembly 1
1.2 Association of Metallic Species with Polymers 4
1.2.1 PVP based BCPs 4
1.2.2 Association Strength of Various Metal Species with PVP Block 6
1.2.3 The small molecule/PVP BCP 7
1.3 Photonic Crystals 8
1.3.1 Nature of photonic crystal 8
1.3.2 Fabrication of Photonic Crystals from BCP self-assembly 11
1.3.3 Bioinspired Electrochemically Tunable BCP 16
1.3.4 BCP Photonic Crystal for Selective Fructose Detection 17
1.3.5 Control of Optical Reflectivity of BCP Photonic Crystals 18
1.4. Controlled Orientation of BCP Microphase Separation 23
1.4.1 Substrate-induced Orientation 23
1.4.2 Solvent evaporation-induced Orientation 25
Chapter 2. Objectives 26
Chapter 3. Materials and Experimental Methods 28
3.1 Materials 28
3.2 Sample Preparation 29
3.2.1 Bulks Samples Preparation 29
3.2.2 Thin Film Samples Preparation 29
3.3 Microstructural Characterization 30
3.3.1 Transmission Electron Microscopy (TEM) 30
3.3.2 Grazing-incidence Ultra-small Angle X-ray Scattering (GIUSAXS) 30
Chapter 4. Results and Discussion 32
4.1 Self-assembled Morphologies of PS-P2VP BCPs in Bulk 32
4.2 Self-assembled Morphologies of PS-P2VP BCPs in Thin Film 33
4.2.1 As-Spun Morphologies from Different Solvents. 33
4.2.2. Phase Transitions by Solvent Annealing in PS-P2VP BCP Thin Films 41
4.3 Optical Properties of the PS-P2VP Photonic Films with Different Microstructures 49
4.3.1. The Photonic Crystal Thin Films of the Gyroid Morphology 49
4.3.2. The Photonic Crystal Thin Films of the Hexagonally Perforated Layer Morphology 55
Chapter 5. Conclusions 57
Chapter 6. Reference 59
參考文獻 References
1. Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
2. Braun, P. V.; Wiltzius, P. Nature 1999, 402,603.
3. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
4. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
5. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
6. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
7. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
8. Forster,S.;Antonietti, M., Adv. Mater. 1998, 10, 195.
9. Kuo, S. W.; Wu, C. H.; Chang, F. C., Macromolecules 2004, 37, 192.
10. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M., Adv. Mater. 1995, 7, 1000.
11. Tsutsumi, K.;Funaki, Y.; Hirokawa, Y.; Hashimoto, T., Langmuir 1999, 15, 5200.
12. Hashimoto, T.; Harada, M.; Sakamoto, N., Macromolecules 1999, 32, 6867.
13. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P., Langmuir 2000, 16, 6913.
14. Amalvy, J. I; Percy, M. J.; Armes, S.P.; Wiese, H., Langmuir 2001, 17, 4770.
15. Cho, G.; Jang, J.; Jung, S.; Moon I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A., Langmuir 2002, 18, 3430.
16. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K., Chem. Mater. 1999, 11, 2372.
17. Moffitt, M.; Eisenberg, A., Chem. Mater. 1995, 7, 1178.
18. Zhao, H.; Douglas, E. P., Chem. Mater. 2002, 14, 1418.
19. Zhao, H. Y.; Douglas, e. P.; Harrison, B. S.; Schanze, K. S., Langmuir 2001, 17, 8428.
20. Pearson, R. G.; J. Am. Chem. Soc. 1963, 85, 3533.
21. Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. J.; Paul Alivisatos, A.; Xu, T., Nat. Mater. 2009, 8, 979.
22. Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Phys. Rev. E.2006, 74, 021922.
23. Yablonovitch, E. Phys. Rev. Lett.1987, 58, 2059.
24. John, S. Phys. Rev. Lett.1987, 58, 2486.
25. Vlasov, Y A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
26. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
27. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters 1991, 21, 1547.
28. T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 1996, 383, 699.
29. Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
30. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
31. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
32. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
33. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett.2003, 82, 3593.
34. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O Nat. Mater 2004, 3, 872.
35. Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
36. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
37. Lin. S.Y.; Fleming. J. G.; J. Lightwave Technol. 1999, 17, 1944.
38. Lin. S.Y.; Fleming. J. G.; Opt. Lett. 1999, 24, 49.
39. Krauss, T. F.; DeLaRue, R. M.; Brand, S. Nature 1996, 383, 699.
40. Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Science 2000, 289, 604.
41. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
42. Ondiglia, V. P.; Natarajan, L. V.; Sutherland, R. L.; Tomlin. D.; Bunning, T. J. Adv. Mater. 2002, 14, 187.
43. Campbell, M.; , Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53.
44. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Princeton University Press: Princeton, 1995.
45. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Nat. Mater. 2007, 6, 957.
46. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
47. Urbas, A.’ Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
48. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer 2003, 44, 6549.
49. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
50. Walish, J. J.; Kang, Y. J.;Mickiewicz, R.A.;Thomas, E.T. Adv. Mater. 2009, 21, 3078.
51. Ayyub, O. B.; Ibrahim, M. B.; Briber, R. M.; Kofinas, P. Biosensors and Bioelectronics 2013, 46, 124.
52. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton University Press: Princeton, NJ, 1995.
53. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
54. Lee, H. D.; Kim, H. Y.; Kim, J. K., Macromolecules 2006, 39, 2027.
55. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
56. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
57. Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
58. Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
59. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
60. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
61. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
62. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
63. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
64. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
65. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
66. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
67. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
68. Martin, T. M.; Young, D. M. Polymer 2003, 44, 4747.
69. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
70. Matsen, M. W.; Bates, F. S. Macromolecules. 1996, 29, 7641.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code