Responsive image
博碩士論文 etd-0708116-111544 詳細資訊
Title page for etd-0708116-111544
論文名稱
Title
研究氧化銦摻鉻薄膜不同成長條件之物理特性
Study of different conditions of grow Cr doped In2O3 thin films with their various Physical Characteristics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-15
繳交日期
Date of Submission
2016-08-22
關鍵字
Keywords
磁圓二色性光譜儀、穿透式電子顯微鏡、熱退火、介面、雙相共存、氧化銦摻鉻
MCD, Rapid Thermal Annealing System, Two phase exist, Interface, TEM, Indium Oxide doped Chromium
統計
Statistics
本論文已被瀏覽 5700 次,被下載 24
The thesis/dissertation has been browsed 5700 times, has been downloaded 24 times.
中文摘要
In2O3在研究領域以及工業發展上,扮演著舉足輕重的角色。因為在電性方面,具有非常高的導電性,是載子濃度非常高的n型半導體;而且,當其摻雜些微的Sn時,在可見光的範圍內,具有極高的透明性,是為ITO透明導電薄膜。所以In2O3本身,很早就被大量運用在光電元件的製作以及研究上。雖然作為一個導電性良好且穿透率高的氧化物半導體,但是In在地球上的含量不夠充裕,間接導致市場的價格慢慢提高,為了增加且延續其可用性,許多團隊開始針對In2O3材料,做磁性方面的研究。1998年,Ohno教授發表了一篇在GaAs薄膜中摻雜少量的Mn的論文,其實驗中發現薄膜具有鐵磁耦合的現象,便開啟了一連串相關的摻雜稀土金屬或過渡金屬薄膜的磁性研究。In2O3作為一個具有寬能隙且導電係數高的氧化物薄膜,因此就有許多團隊,將不同比例且不同的過渡金屬摻雜進In2O3薄膜中,皆量測到鐵磁訊號。
本研究架構在學長的論文主題上,主要針對Cr:In2O3室溫成長的薄膜,其磁訊號的再現,以及為了完整學長的介面引致磁性的論述,本研究將目標放在希望能長出全晶質的Cr:In2O3薄膜。量測全晶質薄膜的磁性是否有隨Cr的摻雜變化,來證實學長對於室溫成長出的Cr:In2O3薄膜,具有非晶-結晶的介面結構,是量測到穩定的室溫鐵磁來源。於是在本研究成長過程中,嘗試調整成長氣壓、濺鍍功率與樣品退火,同時也成長人工的雙層介面,來為佐證之後的多層Cr:In2O3薄膜,做初步的測試。樣品量測方面,則是為了瞭解樣品整體結構,利用了XRD、TEM、AFM,做樣品的微結構分析,利用EDS分析樣品的Cr摻雜濃度,以及MCD來觀察薄膜能隙變化。
Abstract
The study demonstrates that growing indium oxide doped chromium films in room temperature can’t become crystallizations, even the power of indium oxide raise to 150W. Indium oxide doped chromium films are prepared on silicon substrates with silicon dioxide on the top layer (100nm) and fused quartz substrates by DC and RF magnetron sputter. We control the pressure of argon between 6torr and 15torr, and measure the structure of indium oxide films by XRD and the RMS roughness of the surfaces by AFM. We also change the power of indium oxide and chromium to see the variable of photo exiting energy by MCD measurement. In order to make sure the origin of magnetism is from the inter face, we make two layers with 150W CIO film for down layer and 25W CIO films for up layer. Transmission electron microscope (TEM) images show that still has inter face in 150W CIO structure and 25W CIO film become crystallize cause there are many crystal seeds on the top of 150W CIO film. To know the critical temperature, we use rapid thermal annealing system to anneal 25W and 150W CIO films in 400℃ and 600℃.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表 次 viii
圖次 ix
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
第二章 材料特性及磁性原理簡介 11
2-1氧化銦材料介紹 11
2-2磁性分類介紹 12
2-3稀磁性半導體材料鐵磁性來源 16
2-3-1 RKKY模型 [25] [26] [27] 16
2-3-2 BMP模型 [4] 17
2-3-3 VRH同心圓模型 [5] 18
2-3-4電荷轉移模型 [6] 19
第三章實驗方法與儀器介紹 20
3-1 實驗流程 20
3-2 實驗儀器介紹 21
3-2-1 射頻磁控濺鍍與直流濺鍍(RF Magnetron Sputter & DC Sputter) 21
3-2-2 X光繞射儀(X-ray Diffraction, D1) 23
3-2-3 穿透式電子顯微鏡(Transmission Electron Microscope) 25
3-4 原子力顯微鏡(Atomic Force Microscope) 27
3-5 磁圓二色性光譜儀(Magnetic Circular Dichroism Spectrometer) 28
3-6 快速熱退火儀器(Annealing system) 30
3-7 超導量子干涉儀(Superconducting Quantum Interference Device) 30
第四章 結果討論 32
4-1 X-ray晶格繞射之結構分析 32
4-1-1 不同壓力下的In2O3結構之晶體繞射分析 32
4-1-2 不同摻鉻下的氧化銦結構之晶體繞射分析 35
4-1-3 雙層氧化銦摻鉻結構之晶體繞射分析 37
4-1-4氧化銦摻鉻退火結構之晶體繞射分析 39
4-1 (附錄)XRD擬合曲線 42
4-2 TEM薄膜橫切面分析 62
4-2-1 不同壓力下的純氧化銦橫切面結構 62
4-2-2 不同功率下的氧化銦摻鉻橫切面結構 63
4-2-3 雙層氧化銦摻鉻橫切面結構 66
4-2-4氧化銦摻鉻退火橫切面結構 67
4-3 AFM薄膜表面分析 69
4-3-1 不同壓力下的純氧化銦表面結構 69
4-3-2 不同摻鉻下的氧化銦表面結構 71
4-3-3 雙層氧化銦摻鉻表面結構 74
4-3-4氧化銦摻鉻退火表面結構 76
4-4 MCD薄膜光學分析 80
4-4-1 不同壓力下的純氧化銦光學能隙變化 80
4-4-2 不同摻鉻下的氧化銦光學能隙變化 81
4-4-3 雙層氧化銦摻鉻光學能隙變化 82
4-5 VSM薄膜磁性分析 83
4-5-1純氧化銦量測 83
4-5-2氧化銦摻鉻量測 84
4-5-3雙層氧化銦摻鉻量測 84
4-5-4氧化銦與氧化銦摻鉻退火量測 85
第五章 結果討論 86
5-1結論 86
5-2建議 87
參考文獻 88
參考文獻 References
[1] H. Ohno, "Making nonmagnetic semiconductors ferromagnetic," Science, vol. 281, pp. 951-956, 1998.
[2] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, vol. 287, pp. 1019-1022.
[3] T. Tietze, M. Gacic, G. Schutz, G. Jakob, S. Bruck and E. Goering, New J.. Phys, vol. 10, 2008.
[4] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Materials, vol. 4, pp. 173 - 179, 2005.
[5] H. Chou, C. P. Lin, J. C. A. Huang and H. S. Hsu, Phys. Rev. B, vol. 77, pp. 245-210, 2008.
[6] J. M. D. Coey, P. Stamenov, R. D. Gunning and M. Venkatesan, New Journal of Physics, vol. 12, 2010.
[7] 梁原肇, 結晶-非晶雙層鉻摻雜氧化銦之室溫鐵磁性研究, 2015.
[8] N. S. Krishna, S. Kaleemulla, G. Amarendra, N. M. Rao, C. Krishnamoorthi, I. Omkaram and D. S. Reddy, J Mater Sci: Mater Electron, vol. 26, p. 8635–8643, 2015.
[9] H. Baqiah, N. Ibrahim, M. Abdi and S. Halim, J. Alloys Compd., vol. 575, p. 198–206, 2013.
[10] N. Ukah, R. Gupta, P. Kahol and K. Ghosh, Appl. Surf. Sci., vol. 255, p. 9420–9424, 2009.
[11] J. Coey, M. Venkatesan and C. Fitzgerald, Nat. Mater, vol. 4, p. 173–179, 2005.
[12] T. d. Boer, M. F. Bekheet, A. Gurlo, R. Riedel and A. Moewes, PhysRevB, vol. 93, p. 155205, 2016.
[13] A. Walsh, J. L. F. D. Silva, S.-H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange and R. G. Egdell, "Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy," Phys Rev Lett, vol. 100, p. 167402, 2008.
[14] N. H. Honga, J. Sakaib, N. T. Huongb and V. Brize´a, "Co-doped In2O3 thin films: Room temperature ferromagnets," Journal of Magnetism and Magnetic Materials, vol. 302, p. 228–231, 2006.
[15] "Indium tin oxide," [Online]. Available: https://en.wikipedia.org/wiki/Indium_tin_oxide.
[16] 曾浩鈞, 氧化銦摻雜鈷之磁、電性質研究, 2008.
[17] R. P. Panguluri, P. Kharel, C. Sudakar, R. Naik, R. Suryanarayanan, V. M. Naik, A. G. Petukhov, B. Nadgorny and G. Lawes, Phys. Rev. B, vol. 79, p. 165208, 2009.
[18] "Indium(III)_oxide," [Online]. Available: https://en.wikipedia.org/wiki/Indium(III)_oxide.
[19] "Crystal structure of corundum," [Online]. Available: https://en.wikipedia.org/wiki/Corundum.
[20] C. Kittel, Introduction to Solid State Physics, 8 ed.
[21] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2 ed., Wiley, 2008, p. 116.
[22] D. J. Griffiths, Introduction to Electrodynamics, 3 ed.
[23] S. Chikazumi, Physics of Ferromagnetism, 2 ed., Oxford University Press, 2009.
[24] 衛榮漢, 賴梅鳳 and 張慶瑞, "磁性微結構中自旋磁化組態及其動態過程," 物理雙月刊, vol. 26, no. 4, pp. 565-570, 2004.
[25] M. A. Ruderman and C. Kittel, "Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons," Phys. Rev., vol. 96, p. 99, 1954.
[26] Kasuya and Tadao, "A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model," Prog. Theor. Phys., vol. 16, 1956.
[27] K. Yosida, "Magnetic Properties of Cu-Mn Alloys," Phys. Rev., vol. 106, p. 893, 1957.
[28] 林麗娟, "X光繞射原理及其應用," 工業材料, vol. 86, 2 83.
[29] "D1 Evolution," Jordan Valley, 2009. [Online]. Available: http://www.rusnanonet.ru/download/documents/d1.pdf.
[30] 林良平, "高解像力電子顯微鏡在生物科學上的應用," 科儀新知, no. 61, pp. 17-27, 1991.
[31] 許宏泰, 徐英展, 陳志立 and 謝明勳, "高解析度穿透式電子顯微鏡分析(HRTEM)".
[32] 陳福榮 and 張立, "場發射穿透式電子顯微鏡," 科儀新知, no. 84, pp. 4-16, 1995.
[33] 陳力俊, 材料電子顯微鏡學, 行政院國家科學委員會精密儀器發展中心, 1994.
[34] "FEI Tecnai™," FEI, [Online]. Available: https://www.fei.com/products/tem/tecnai/?LangType=1033.
[35] 王正懌, 研究氧缺陷對鈷摻雜氧化鋅之物理特性, 2014.
[36] "Circular polarization," [Online]. Available: https://en.wikipedia.org/wiki/Circular_polarization.
[37] D. A. Lightner and J. E. Gurst, Organic conformational analysis and stereochemistry from circular dichroism spectroscopy, John Wiley & Sons, Inc, 2000.
[38] AST聚昌科技, [Online]. Available: http://www.ast-taiwan.com.tw/.
[39] 楊鴻昌, "最敏感的感測元件SQUID極其前瞻性應用," 物理雙月刊, vol. 24, no. 5, pp. 652-666, 2002.
[40] "超導量子干涉震動磁量儀," 成功大學貴重儀器中心, [Online]. Available: http://www.ncku.edu.tw/facility/facility/devices/02_SQUID-1.htm.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code