Responsive image
博碩士論文 etd-0708116-113037 詳細資訊
Title page for etd-0708116-113037
論文名稱
Title
經同型半胱氨酸硫內酯醯基置換反應進行含甲硫氨酸胜肽之合成
Chemical ligation at methionine via acyl transfer of homocysteine thiolactone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-11
繳交日期
Date of Submission
2016-08-08
關鍵字
Keywords
自然化學鍊結、開環反應、胜肽合成方法、偶和反應、醯基置換
acyl transfer, peptide synthesis, ring-opening reaction, peptide coupling, native chemical ligation
統計
Statistics
本論文已被瀏覽 5642 次,被下載 22
The thesis/dissertation has been browsed 5642 times, has been downloaded 22 times.
中文摘要
迄今為止,胜肽的合成方法已經發展了超過了三十餘年,到目前為止,已經有了許多不同的胜肽合成方法。然而,科學家在發展此類方法學的過程中,面臨到了許多不同的困境,其中最大的問題在於長鏈胜肽合成過程中,產率提升的問題。 到了1990年代,科學家發展了Native Chemical Ligation (NCL)並將其有效的運用在胜肽合成。也因此,科學家們發展了許多以NCL為基礎的長鏈胜肽合成方法。
本篇論文著重於研究透過同型半胱氨酸硫內酯之醯基置換所完成的胜肽合成策略。所得到的胜肽產物可以進一步甲基化,如此,便可完成一個具甲硫氨酸的長鏈胜肽合成方法。然而,在進行同型半胱氨酸硫內酯之開環反應的過程中發現了許多造成產率下降的副反應,幸運的是,此類副反應可以透過添加含銀離子之鹽類來抑制進而大幅提升整體反應效率。
Abstract
Peptide synthesis had been developed for more than 30 years. For the moment, there have been many methods for peptide synthesis. During the development of peptide formation, researchers have faced many difficulties such as limited yields for long peptide and racemization. In 1990s, native chemical ligation (NCL) had been discovered and efficiently applied on long peptide formation. After that, many scientists have developed many methods for a variety of long peptide formation based by NCL. This thesis is focused on peptide ligation strategy via acyl transfer of homocysteine thiolactone. The corresponding product could further be applied in NCL followed by methylation to furnish a general method for large peptide synthesis at methionine residue. However, some unexpected polymerization were observed during the process of ring-opening reaction that significantly affected product yield. Fortunately, it was found that addition of Ag(I) salt could suppress side reaction and greatly improved the reaction efficiency.
目次 Table of Contents
Chapter 1 Introduction..................................... 1
1.1 The Early Development of peptide formation...1
1.2 The Invention of NCL....................................4
1.3 Variation on NCL.......................................... 6
1.4 Desulfurization of Cysteine Residue...............7
1.5 NCL through Selenocysteine..........................9
1.6 The NCL via Different N-Terminal Peptide.......10
1.8 Research motivation.....................................11
Chapter 2 Result and Discussion.......................12
2.1 Substrate Preparation....................................12
2.1.1 Synthesis of Amino Acid Derivatives...........12
2.1.2 Synthesis of tert-butyl (2-oxotetrahydrothiophen-3-yl)carbamate (9a)...14
2.2 Ring-Opening Reaction of tert-butyl(2-oxotetrahydrothiophen-3- 14
yl)carbamate (9a)....................................................................................14
2.2.1 The Ring-Opening Reaction with Hexylamine.....................................14
2.2.2 Ring-Opening Reaction with Glycinamide...........................................16
2.2.3 The Ring-Opening Reaction with HβAlaHexylamine (2c)......................16
2.2.4 Ring-Opening Reaction with HAlaHexylamine (3c) ..............................18
2.2.5 Ring-Opening Reaction with Piperidine ..............................................19
2.2.6 Ring-Opening Reaction with amino acids contain bulky side chain.......19
2.3 Ring-Opening Reaction with HValHexylamine (7c) using AgBF4 as a Lewis acid additive....20
2.4 Ring-Opening Reaction with HValHexylamine (7c) using different Lewis acid additives........23
2.5 Ring-Opening Reaction with different amino acid derivatives using AgClO4 as a Lewis acid additive....24
Chapter 3 Conclusion........................................................................................................25
Chapter 4 Experimental.....................................................................................................26
4.1 General Experimental....................................................................................................26
4.2 Experimental Procedures...............................................................................................27
4.2.1 The Synthesis of tert-butyl (2-oxotetrahydrothiophen-3-yl)carbamate (9a).........................27
4.2.2 General Procedure for Synthesis of Amino Acid Derivative.............................................28
4.2.3 Ring-Opening Reaction with Hexylamine with TBD as Catalyst.......................................34
4.2.4 General Process of the Ring-Opening Reaction via HβAlaHexylamine
(2c) or HAlaHexylamine (3c).................................................................................................36
4.2.5 The ring-opening reaction via piperidine.........................................................................40
4.2.6 Ring-Opening Reaction with different amino acid derivatives using AgClO4 as Lewis Acid additive and DABCO as base...................................................................................................................................41
Appendix.............................................................................................................................48
References..........................................................................................................................70
參考文獻 References
.1. El-Faham, A.; Albericio, F., Peptide Coupling Reagents, More than a Letter Soup. Chemical Reviews 2011, 111 (11), 6557-6602.
2. Carpino, L. A., 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. Journal of the American Chemical Society 1993, 115 (10), 4397-4398.
3. Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H., Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Annalen der Chemie 1953, 583 (1), 129-149.
4. Dawson, P.; Muir, T.; Clark-Lewis, I.; Kent, S., Synthesis of proteins by native chemical ligation. Science 1994, 266 (5186), 776-779.
5. Johnson, E. C. B.; Kent, S. B. H., Insights into the Mechanism and Catalysis of the Native Chemical Ligation Reaction. Journal of the American Chemical Society 2006, 128 (20), 6640-6646.
6. Leichert, L. I.; Jakob, U., Protein Thiol Modifications Visualized In Vivo. PLoS Biol 2004, 2 (11), e333.
7. Canne, L. E.; Bark, S. J.; Kent, S. B. H., Extending the Applicability of Native Chemical Ligation. Journal of the American Chemical Society 1996, 118 (25), 5891-5896.
8. Fotouhi, N.; Galakatos, N. G.; Kemp, D. S., Peptide synthesis by prior thiol capture. 6. Rates of the disulfide-bond-forming capture reaction and demonstration of the overall strategy by synthesis of the C-terminal 29-peptide sequence of BPTI. The Journal of Organic Chemistry 1989, 54 (12), 2803-2817.
9. Yan, L. Z.; Dawson, P. E., Synthesis of Peptides and Proteins without Cysteine Residues by Native Chemical Ligation Combined with Desulfurization. Journal of the American Chemical Society 2001, 123 (4), 526-533.
10. (a) Quaderer, R.; Sewing, A.; Hilvert, D., Selenocysteine-Mediated Native Chemical Ligation. Helvetica Chimica Acta 2001, 84 (5), 1197-1206; (b) Lu, J.; Holmgren, A., Selenoproteins. Journal of Biological Chemistry 2009, 284 (2), 723-727.
11. (a) Crich, D.; Banerjee, A., Native Chemical Ligation at Phenylalanine. Journal of the American Chemical Society 2007, 129 (33), 10064-10065; (b) Crich, D.; Banerjee, A., Expedient Synthesis of threo-β-Hydroxy-α-amino Acid Derivatives:  Phenylalanine, Tyrosine, Histidine, and Tryptophan. The Journal of Organic Chemistry 2006, 71 (18), 7106-7109; (c) Furukawa, N.; Morishita, T.; Akasaka, T.; Oae, S., A new acid-catalysed rearrangement of thiosulphinates to [small alpha]-acetylthiosulphoxides in acetic anhydride. Journal of the Chemical Society, Perkin Transactions 2 1980, (2), 432-440.
12. Blanco-Canosa, J. B.; Dawson, P. E., An Efficient Fmoc-SPPS Approach for the Generation of Thioester Peptide Precursors for Use in Native Chemical Ligation. Angewandte Chemie International Edition 2008, 47 (36), 6851-6855.
13. Haase, C.; Rohde, H.; Seitz, O., Native Chemical Ligation at Valine. Angewandte Chemie International Edition 2008, 47 (36), 6807-6810.
14. Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F., Dual Native Chemical Ligation at Lysine. Journal of the American Chemical Society 2009, 131 (38), 13592-13593.
15. (a) Simón, L.; Goodman, J. M., The Mechanism of TBD-Catalyzed Ring-Opening Polymerization of Cyclic Esters. The Journal of Organic Chemistry 2007, 72 (25), 9656-9662; (b) Sabot, C.; Kumar, K. A.; Meunier, S.; Mioskowski, C., A convenient aminolysis of esters catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Tetrahedron Letters 2007, 48 (22), 3863-3866.
16. Rüegg, U. T.; Rudinger, J., [10] Reductive cleavage of cystine disulfides with tributylphosphine. In Methods in Enzymology, Academic Press: 1977; Vol. Volume 47, pp 111-116.
17. Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A., Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units:  Unification of Different Basicity Scales. The Journal of Organic Chemistry 2005, 70 (3), 1019-1028.
18. (a) Mead, K. K.; Maricle, D. L.; Streuli, C. A., Formation Constants of Silver-Amine Complexes in Acetone. Analytical Chemistry 1965, 37 (2), 237-240; (b) Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. Chemical Reviews 1996, 96 (2), 877-910; (c) Pauley, J. L.; Hau, H. H., Instability Constants of Silver—Amine Complexes in Isopropyl Alcohol1. The Journal of Physical Chemistry 1966, 70 (10), 3363-3366.
19. Okumura, K.; Oda, T.; Kondo, K.; Inoue, I.; Danno, T.; Yamaguchi, H.; Masukawa, K., Vitamin B6 derivatives. 13. Synthesis of tetrahydrothiazine derivatives of vitamin B6 and their biological properties. Journal of Medicinal Chemistry 1971, 14 (3), 226-229.
20. Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.; Mashima, K., Sodium methoxide: a simple but highly efficient catalyst for the direct amidation of esters. Chemical Communications 2012, 48 (44), 5434-5436.
21. Otaki, Y.; Miyagi, Y.; Sanda, F., Synthesis and Properties of Novel Optically Active Poly(thiophenyleneethynylene-phenyleneethynylene)s. Chemistry Letters 2015, 44 (7), 1013-1015.
22. McNulty, J.; Vemula, R.; Krishnamoorthy, V.; Robertson, A., The phosphate–carboxylate mixed-anhydride method: a mild, efficient process for ester and amide bond construction. Tetrahedron 2012, 68 (27–28), 5415-5421.
23. Lee, S.; Hua, Y.; Flood, A. H., β-Sheet-like Hydrogen Bonds Interlock the Helical Turns of a Photoswitchable Foldamer To Enhance the Binding and Release of Chloride. The Journal of Organic Chemistry 2014, 79 (17), 8383-8396.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code