Responsive image
博碩士論文 etd-0708116-115120 詳細資訊
Title page for etd-0708116-115120
論文名稱
Title
SOI與鰭式之金氧半場效電晶體可靠度物理機制分析
Physical Mechanism and Reliability Analysis on Advanced SOI MOSFETs and FinFETs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-08
關鍵字
Keywords
偏壓不穩定性、矽覆絕緣、鰭式電晶體、金氧半場效電晶體、熱載子劣化
SOI, MOSFETs, PBS, hot carrier degradation, FinFETs
統計
Statistics
本論文已被瀏覽 5684 次,被下載 23
The thesis/dissertation has been browsed 5684 times, has been downloaded 23 times.
中文摘要
近年來,電子產品包含顯示器面板,記憶體,以及可攜式產品等等,都變得愈來愈受消費展歡迎。而這些電子產品絕大部分都包含有金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistors, MOSFETs)。這是由於比起其他電晶體,它具有較低的製造成本、較低的功率消耗、以及它很容易微縮。
然而,在傳統電晶體持續的微縮後,會面臨閘極漏電,短通道效應…等問題,這不但會降低閘極的控制能力,還會增加元件的功率消耗。為了解決這些問題,因此使用了矽覆絕緣(silicon on insulator, SOI),與高介電常數氧化層/金屬閘極(high-k/metal gate)堆疊結構和鰭式之金氧半場效電晶體(Fin Field Effect Transistors, FinFETs)。
因此,本論文會針對n型的SOI MOSFETs以及FinFETs兩種元件,去做電性分析以及熱載子應力(hot carrier stress, HCS)和正偏壓應力(positive bias stress, PBS)的探討。本論文可依元件結構而粗分成部分空乏(partially depleted, PD)矽覆絕緣金氧半場效電晶體和鰭式電晶體兩大部分。
在PD SOI MOSFETs這個部分,我們分成三個小節來探討其電性以及熱載子應力劣化的物理機制。第一小節探討的是PD SOI的浮體效應對變溫的熱載子應力之影響。實驗結果顯示,在相同熱載子應力的條件下,在基板不接(floating body, FB)操作下的劣化會比基板接地(body contact, BC)操作下的劣化嚴重。經由快速量測的實驗驗證後,發現這是由於碰撞遊離後的電洞累積在基板,而造成浮體效應所導致的。接著,我們也討論了FB操作下,在不同溫度時的熱載子應力的劣化比較。實驗結果顯示,在FB操作下的熱載子應力劣化,會隨著溫度上升,而變得愈來愈不嚴重。經過一系列的實驗去驗證後,發現FB操作下的變溫熱載子應力劣化為源極/汲極和基板間的PN接面(PN junction)可儲存電洞的能力所主導。
在第二小節中,我們在發現PDSOI基底接觸結構(body contact structure)中發現,有一個異常第二個的轉導峰值存在,但是在沒有PDSOI基底接觸結構中,卻未發現此現象。我們認為是由於,這個元件是使用L型閘極(L-Gate)的基底接觸結構,因此有部分的閘極是P型的,使得元件出現一個寄生通道的現象。利用不同的量測手法和可靠度研究,可證明我們提出的模型。
在SOI的最後一個小節中,我們使用的元件結構為 PD SOI Lateral diffusion (LD) MOSFETs。相較於一般的熱載子應力劣化,只跟汲極工程最為相關,但在這邊卻發現,resist protected oxide (RPO)的品質竟然會顯著的影響熱載子應力的劣化程度。經由ISE-TCAD軟體的電性模擬之後可知道,碰撞游離最嚴重的地方會發生在,低N型參雜的耐壓區(N- drift region)和N+汲極的介面,而且在此處的電場方向是指向RPO的,因此在熱載子應力施加時,在RPO中,會有明顯的載子注入情況,使得元件在熱載子應力後的電性受到影響。
而在鰭式之金氧半場效電晶體之研究中,我們也去針對它的電性以及可靠度去做物理機制的探討。
ㄧ般而言,在飽和區量測下,才會出現基底電流,這是由於碰撞游離,使得在靠近汲極的地方有電子電洞對的產生。很有趣的是,在本研究中發現,線性區竟然出現了ㄧ個異常的基底電流。我們猜測這個異常的基底電流是因為Fin形成時,會經過很多道的蝕刻步驟,因此Fin的表面有許多的介面缺陷,而這些介面缺陷就是導致異常基底電流的主因。最後,我們去量測不同汲極偏壓下的異常基底電流,變溫的基底電流量測,以及改變通道長度的基底電流量測,這些都證明了我們所提出的模型。
最後,我們也研究了,在鰭式電晶體中的,不同通道長度的元件,對於正偏壓應力的影響。由於PBS的實驗,是指有施加閘極偏壓的,所以應該和元件的通道長度沒有關係。但實驗結果卻指出,長通道元件中的PBS劣化,比短通道元件還要嚴重。更特別的是,在短通道的PBS後,竟然看到了一個異常的轉導峰值上升情形。由ISE-TCAD軟體的電場模擬可知,這是由於在沿著Fin寬方向的中間,在通道方向的邊緣處,有一強電場,使得電洞會從閘極往閘極絕緣層注入,導致電子聚積在靠近LDD處,因此降低了有效通道的長度。又由於通道縮短的長度是一樣的,因此,這個現象在短通道元件中會顯得更為顯著。
Abstract
Recently, electronic products combining display panels, memory devices, and portable devices have become more popular for consumers. These electronic products are mostly composed of metal-oxide-semiconductor field effect transistors (MOSFETs). It is due to MOSFETs having the advantage of low cost, low power consumption and the ability to be scaled down easily. However, continuous scaling down of traditional MOSFETs can face problems like, gate leakage, short channel effect…etc. It not only reduces gate control ability but also increases device power consumption. To solve these problems, silicon on insulator, (SOI), high-k/metal gate stack structure, and Fin Field Effect Transistors (FinFETs) have been used. Therefore, in this dissertation, we will focus on n-type MOSFETs and FinFETs devices to investigate electrical characteristics, hot carrier stress (HCS), and positive bias stress (PBS). This dissertation can be roughly divided into two parts based on device structure. One is partially depleted silicon on insulator, (PD-SOI) and the other is FinFETs.
The PD SOI MOSFETs section is divided into three sections to investigate the physical mechanisms and hot carrier degradation. The first PD SOI section, we investigates the behavior of hot carrier-induced degradation at different temperatures under GB and FB operations, and finds that the degradation under FB is more serious than that under GB operation due to the floating body effect. Fast I–V shows a drain current rise after FB-HCS. This can be attributed to the fact that impact-ionization-generated holes are injected into the floating substrate. Next experience with hot carrier stress degradation with different temperature, and find the degradation under FB operation becomes less significant with increasing temperature. This is due to the lessened ability to retain holes at the source/body PN junction at high temperature and the resultant insignificant FBE. According to this study, hot-carrier-induced degradation under GB operation at different temperatures is dominated by the impact ionization rate, while the degree of degradation under FB operation is dominated by the ability to retain holes at the source/body PN junction.
In the second PD-SOI section, founded and investigated abnormal charge pumping current (ICP) in body-tied partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field effect transistors. The ICP second hump region increases with channel length, yet is not affected by channel width in the L-gate structure. Because of a part of the poly gate area near the body contact is covered by a P+ implant, inducing a parasitic channel under the P+ poly gate. This parasitic channel leads to the abnormal Gm and ICP hump, and such mechanism is further verified by different measurement and reliability methods.
In the second PD-SOI section, we investigates the origin of an anomalous enhancement in on-state current under hot carrier stress and temperature dependent hot-carrier-induced degradation in lateral diffused SOI n-MOSFETs. Threshold voltage and subthreshold swing degrade, whereas an abnormal on-state current exhibits a quick rise after HCS due to hole trapping in the resist-protective oxide. Impact ionization simulation shows that low doping concentrations in the drift region causes a severe Kirk effect under HCS and more severe degradation at higher VG. Notably, degradation in the channel contrasts with the simulation result, which suggests another mechanism. Moreover, variable temperature HCS verifies that channel degradation is dominated by temperature.
Finally, in the high-k/metal gate stack FinFETs section, we also investigated electrical characteristics and reliability. The first section in FinFETs, we investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack FinFETs. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.
In the second section of FinFETs, we investigate an abnormal transconductance (Gm) enhancement after positive bias stress (PBS) in n-channel HK/MG FinFETs. This abnormal Gm enhancement after PBS is observed only in short channel devices. With the speculation that hole-trapping-induced electron accumulation is the dominant mechanism, PBS with floating source and drain is adopted as an investigative approach. This, together with the electric field simulation, verifies that hole-trapping in the HfO2 and SiN near the gate corner induces electron accumulated at the ends of the channel length. Such a phenomenon results in a shortening of effective channel length and further Gm enhancement
目次 Table of Contents
[ 摘要 ii ]
[ Abstract vi ]
[ Figure Captions xiv ]
[ Chapter 1 1 ]
[ 1.1 Basic Background 1 ]
[ 1.1.1 Overview of Moore’s Law, Roadmap of scaling down 1 ]
[ 1.1.2 Overview of Silicon-on-Insulator (SOI) MOSFETs 3 ]
[ 1.1.3 Overview of high-k/metal gate MOSFETs 4 ]
[ 1.1.4 Overview of FinFETs 5 ]
[ Reference 7 ]
[ Chapter 2 Parameter Extraction and Measurement Technique 20 ]
[ 2.1 Method of Device Parameter Extraction 20 ]
[ 2.1.1 Determination of threshold voltage (VT) 20 ]
[ 2.1.2 Determination of the subthreshold swing 21 ]
[ Reference 22 ]
[ Chapter 3 27 ]
[ 3.1 Introduction 28 ]
[ 3.2 Experiment 29 ]
[ 3.3 Result and Discussion 29 ]
[ 3.4 Summary 35 ]
[ Reference 36 ]
[ Chapter 4 53 ]
[ 4.1 Introduction 53 ]
[ 4.2 Experiment 54 ]
[ 4.3 Result and Discussion 55 ]
[ 4.4 Summary 58 ]
[ Reference 59 ]
[ Chapter 5 70 ]
[ 5.1 Introduction 71 ]
[ 5.2 Experiment 72 ]
[ 5.3 Result and Discussion 73 ]
[ 5.4 Summary 80 ]
[ Reference 82 ]
[ Chapter 6 99 ]
[ 6.1 Introduction 99 ]
[ 6.2 Experiment 100 ]
[ 6.3 Result and Discussion 101 ]
[ 6.4 Summary 104 ]
[ Reference 106 ]
[ Chapter 7 120 ]
[ 7.1 Introduction 120 ]
[ 7.2 Experiment 122 ]
[ 7.3 Result and Discussion 123 ]
[ 7.4 Summary 127 ]
[ Reference 128 ]
[ Chapter 8 141 ]
[ Publication List 145 ]
[ Vita 簡 歷 150 ]
參考文獻 References
[1.1] http://www.intel.com/content/www/us/en/silicon-innovations/advancing-moores-law-in-2014-presentation.html
[1.2] http://www.intel.com/content/www/us/en/silicon-innovations/standards-22nm-3d-tri-gate-transistors-presentation.html.
[1.3] H. Lin, J. Lin, and R. C. Chang, "Inversion-layer induced body current in SOI MOSFETs with body contacts," IEEE Electron Device Letters, vol. 24, pp. 111-113, 2003.
[1.4] W.-C. Lo, S.-J. Chang, C.-Y. Chang, and T.-S. Cao, "Impacts of gate structure on dynamic threshold SOI nMOSFETs," IEEE Electron Device Letters, vol. 23, pp. 497-499, 2002.
[1.5] C.-Y. Chang, S.-J. Chang, T.-S. Chao, S.-D. Wu, and T.-Y. Huang, "Reduced reverse narrow channel effect in thin SOI nMOSFETs," IEEE Electron Device Letters, vol. 21, pp. 460-462, 2000.
[1.6] M. Cassé, J. Pretet, S. Cristoloveanu, T. Poiroux, C. Fenouillet-Beranger, F. Fruleux, et al., "Gate-induced floating-body effect in fully-depleted SOI MOSFETs with tunneling oxide and back-gate biasing," Solid-State Electronics, vol. 48, pp. 1243-1247, 2004.
[1.7] X. Luo, Y. Wang, T. Lei, L. Lei, D. Fu, G. Yao, et al., "Novel high voltage LDMOS on partial SOI with double-sided charge trenches," in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, 2011, pp. 76-79.
[1.8] S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, K. Yamashita, M. Niwa, et al., "Crystallization in HfO2 gate insulators with in situ annealing studied by valence-band photoemission and x-ray absorption spectroscopy," Journal of applied physics, vol. 97, pp. 104507-104507, 2005.
[1.9] R. Puthenkovilakam, M. Sawkar, and J. P. Chang, "Electrical characteristics of postdeposition annealed HfO2 on silicon," Applied Physics Letters, vol. 86, p. 2902, 2005.
[1.10] J. Park, M. Cho, S. K. Kim, T. J. Park, S. W. Lee, S. H. Hong, et al., "Influence of the oxygen concentration of atomic-layer-deposited HfO2 films on the dielectric property and interface trap density," Applied Physics Letters, vol. 86, 2005.
[1.11] J. Robertson, O. Sharia, and A. Demkov, "Fermi level pinning by defects in HfO2-metal gate stacks," Applied Physics Letters, vol. 91, p. 2912, 2007.
[1.12] K. Akiyama, W. Wang, W. Mizubayashi, M. Ikeda, H. Ota, T. Nabatame, et al., "V FB Roll-off in HfO 2 Gate Stack after High Temperature Annealing Process-A Crucial Role of Out-diffused Oxygen from HfO 2 to Si," in 2007 IEEE Symposium on VLSI Technology, 2007, pp. 72-73.
[1.13] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, "Erratum:“Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering”[J. Appl. Phys. 90, 4587(2001)]," Journal of Applied Physics, vol. 91, p. 546, 2002.
[1.14] S. Datta, G. Dewey, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, et al., "High mobility Si/SiGe strained channel MOS transistors with HfO/sub 2//TiN gate stack," in Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International, 2003, pp. 28.1. 1-28.1. 4.
[1.15] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-κ/metal-gate stack and its MOSFET characteristics," IEEE Electron Device Letters, vol. 25, pp. 408-410, 2004.
[1.16] R. R. Troutman, "VLSI limitations from drain-induced barrier lowering," IEEE Journal of Solid-State Circuits, vol. 14, pp. 383-391, 1979.
[1.17] F.-C. Hsu, R. S. Muller, and C. Hu, "A simplified model of short-channel MOSFET characteristics in the breakdown mode," IEEE Transactions on Electron Devices, vol. 30, pp. 571-576, 1983.
[1.18] V. De and S. Borkar, "Technology and design challenges for low power and high performance," in Proceedings of the 1999 international symposium on Low power electronics and design, 1999, pp. 163-168.
[1.19] V. Subramanian, A. Mercha, B. Parvais, J. Loo, C. Gustin, M. Dehan, et al., "Impact of fin width on digital and analog performances of n-FinFETs," Solid-State Electronics, vol. 51, pp. 551-559, 2007.
[1.20] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, 2000.
[1.21] T.-s. Park, S. Choi, D. Lee, J. Yoo, B. Lee, J. Kim, et al., "Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 135-136.
[1.22] T.-S. Park, H. J. Cho, J. D. Choe, I. H. Cho, D. Park, E. Yoon, et al., "Characteristics of body-tied triple-gate pMOSFETs," IEEE electron device letters, vol. 25, pp. 798-800, 2004.
[1.23] K. A. Jenkins and B. P. Linder, "Reduction of Hot Carrier Degradation of FinFETs Due to Short-Pulse Stress," IEEE Electron Device Letters, vol. 36, pp. 1274-1276, 2015.
[1.24] C. Prasad, "Advanced CMOS reliability challenges," in Proceedings of Technical Program-2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2014, pp. 1-2.
[1.25] C. Prasad, L. Jiang, D. Singh, M. Agostinelli, C. Auth, P. Bai, et al., "Self-heat reliability considerations on Intel's 22nm Tri-Gate technology," in 2013 IEEE International Reliability Physics Symposium (IRPS), 2013.
[1.26] S. Liu, J. Wang, Y. Lu, D. Huang, C. Huang, W. Hsieh, et al., "Self-heating effect in FinFETs and its impact on devices reliability characterization," in 2014 IEEE International Reliability Physics Symposium, 2014, pp. 4A. 4.1-4A. 4.4.
[2.1] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.[3.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[3.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[3.3] H.-Y. Lu, P.-T. Liu, T.-C. Chang, and S. Chi, "Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays," IEEE electron device letters, vol. 27, pp. 743-745, 2006.
[3.4] K.-C. Chang, T.-M. Tsai, T.-C. Chang, K.-H. Chen, R. Zhang, Z.-Y. Wang, et al., "Dual ion effect of the lithium silicate resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 530-532, 2014.
[3.5] R. Zhang, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S.-Y. Huang, W.-J. Chen, et al., "Characterization of oxygen accumulation in indium-tin-oxide for resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 630-632, 2014.
[3.6] T.-J. Chu, T.-M. Tsai, T.-C. Chang, K.-C. Chang, R. Zhang, K.-H. Chen, et al., "Tri-resistive switching behavior of hydrogen induced resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 217-219, 2014.
[3.7] T. Nakamura, M. Yamamoto, H. Ishikawa, and M. Shinoda, "Punch-through MOSFET for high-speed logic," in Solid-State Circuits Conference. Digest of Technical Papers. 1978 IEEE International, 1978, pp. 22-23.
[3.8] K. Kim and A. A. Iliadis, "Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference," Solid-State Electronics, vol. 52, pp. 1589-1593, 2008.
[3.9] A. Chaudhry and M. J. Kumar, "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 99-109, 2004.
[3.10] G. Shahidi, A. Ajmera, F. Assaderaghi, R. Bolam, A. Bryant, M. Coffey, et al., "Mainstreaming of the SOI technology," in Proc. IEEE Int. SOI Conf, 1999, pp. 1-4.
[3.11] G. G. Shahidi, "SOI technology for the GHz era," in VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on, 2001, pp. 11-14.
[3.12] F. T. Brady, N. F. Haddad, and A. Edenfeld, "Method to prevent latch-up and improve breakdown volatge in SOI mosfets," ed: Google Patents, 1996.
[3.13] K. Jenkins and K. Rim, "Measurement of the effect of self-heating in strained-silicon MOSFETs," IEEE Electron Device Letters, vol. 23, pp. 360-362, 2002.
[3.14] W. Jin, S. K. Fung, W. Liu, P. C. Chan, and C. Hu, "Self-heating characterization for SOI MOSFET based on AC output conductance," in Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International, 1999, pp. 175-178.
[3.15] P.-F. Lu, C.-T. Chuang, J. Ji, L. F. Wagner, C.-M. Hsieh, J. Kuang, et al., "Floating-body effects in partially depleted SOI CMOS circuits," IEEE Journal of Solid-State Circuits, vol. 32, pp. 1241-1253, 1997.
[3.16] H. Shin, I.-S. Lim, M. Racanelli, W.-L. M. Huang, J. Foerstner, and B.-Y. Hwang, "Analysis of floating body induced transient behaviors in partially depleted thin film SOI devices," IEEE Transactions on Electron Devices, vol. 43, pp. 318-325, 1996.
[3.17] W. Chen, Y. Taur, D. Sadana, K. Jenkins, J. Sun, and S. Cohen, "Suppression of the SOI floating-body effects by linked-body device structure," in VLSI Technology, 1996. Digest of Technical Papers. 1996 Symposium on, 1996, pp. 92-93.
[3.18] T. W. Houston and G. P. Pollack, "Method of fabricating a SOI transistor with pocket implant and body-to-source (BTS) contact," ed: Google Patents, 1993.
[3.19] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, "Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFETs," IEEE Transactions on Electron Devices, vol. 35, pp. 2194-2209, 1988.
[3.20] D. Munteanu and A.-M. Ionescu, "Modeling of drain current overshoot and recombination lifetime extraction in floating-body submicron SOI MOSFETs," IEEE transactions on Electron Devices, vol. 49, pp. 1198-1205, 2002.
[3.21] Y.-C. Tseng, W. M. Huang, C. Hwang, and J. C. Woo, "AC floating body effects in partially depleted floating body SOI nMOS operated at elevated temperature: an analog circuit prospective," IEEE Electron Device Letters, vol. 21, pp. 494-496, 2000.
[3.22] M. Emam, J. C. Tinoco, D. Vanhoenacker-Janvier, and J.-P. Raskin, "High-temperature DC and RF behaviors of partially-depleted SOI MOSFET transistors," Solid-State Electronics, vol. 52, pp. 1924-1932, 2008.
[3.23] M. Emam and J.-P. Raskin, "Partially depleted SOI versus deep n-well protected bulk-Si MOSFETs: a high-temperature RF study for low-voltage low-power applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 1496-1504, 2013.
[3.24] D.-S. Jeon and D. E. Burk, "A temperature-dependent SOI MOSFET model for high-temperature application (27 C-300 C)," IEEE Transactions on electron devices, vol. 38, pp. 2101-2111, 1991.
[3.25] C.-W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, et al., "High-temperature performance of silicon junctionless MOSFETs," IEEE Transactions on Electron Devices, vol. 57, pp. 620-625, 2010.
[3.26] D.-S. Jeon and D. E. Burk, "A temperature-dependent SOI MOSFET model for high-temperature application (27 C-300 C)," IEEE Transactions on electron devices, vol. 38, pp. 2101-2111, 1991.
[3.27] S.-i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Transactions on Electron Devices, vol. 41, pp. 2357-2362, 1994.
[3.28] P. Aminzadeh, M. Alavi, and D. Scharfetter, "Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias," in VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on, 1998, pp. 178-179.
[3.29] S. Lin and J. Kuo, "Temperature-dependent kink effect model for partially-depleted SOI NMOS devices," IEEE Transactions on Electron Devices, vol. 46, pp. 254-258, 1999.
[4.1] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials today, vol. 14, pp. 608-615, 2011.
[4.2] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, et al., "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films," Applied Physics Letters, vol. 96, p. 262110, 2010.
[4.3] H.-Y. Lu, P.-T. Liu, T.-C. Chang, and S. Chi, "Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays," IEEE electron device letters, vol. 27, pp. 743-745, 2006.
[4.4] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, et al., "Redox Reaction Switching Mechanism in RRAM Device With Structure," IEEE Electron Device Letters, vol. 32, pp. 545-547, 2011.
[4.5] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[4.6] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, et al., "Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress," Applied Physics Letters, vol. 97, p. 112104, 2010.
[4.7] T. Nakamura, M. Yamamoto, H. Ishikawa, and M. Shinoda, "Punch-through MOSFET for high-speed logic," in Solid-State Circuits Conference. Digest of Technical Papers. 1978 IEEE International, 1978, pp. 22-23.
[4.8] K. Kim and A. A. Iliadis, "Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference," Solid-State Electronics, vol. 52, pp. 1589-1593, 2008.
[4.9] A. Chaudhry and M. J. Kumar, "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 99-109, 2004.
[4.10] G. Shahidi, A. Ajmera, F. Assaderaghi, R. Bolam, A. Bryant, M. Coffey, et al., "Mainstreaming of the SOI technology," in Proc. IEEE Int. SOI Conf, 1999, pp. 1-4.
[4.11] G. G. Shahidi, "SOI technology for the GHz era," in VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on, 2001, pp. 11-14.
[4.12] F. T. Brady, N. F. Haddad, and A. Edenfeld, "Method to prevent latch-up and improve breakdown volatge in SOI mosfets," ed: Google Patents, 1996.
[4.13] K. Jenkins and K. Rim, "Measurement of the effect of self-heating in strained-silicon MOSFETs," IEEE Electron Device Letters, vol. 23, pp. 360-362, 2002.
[4.14] W. Jin, S. K. Fung, W. Liu, P. C. Chan, and C. Hu, "Self-heating characterization for SOI MOSFET based on AC output conductance," in Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International, 1999, pp. 175-178.
[4.15] P.-F. Lu, C.-T. Chuang, J. Ji, L. F. Wagner, C.-M. Hsieh, J. Kuang, et al., "Floating-body effects in partially depleted SOI CMOS circuits," IEEE Journal of Solid-State Circuits, vol. 32, pp. 1241-1253, 1997.
[4.16] H. Shin, I.-S. Lim, M. Racanelli, W.-L. M. Huang, J. Foerstner, and B.-Y. Hwang, "Analysis of floating body induced transient behaviors in partially depleted thin film SOI devices," IEEE Transactions on Electron Devices, vol. 43, pp. 318-325, 1996.
[4.17] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-C. Chen, C.-C. Tsai, et al., "On the origin of hole valence band injection on GIFBE in PD SOI n-MOSFETs," IEEE Electron Device Letters, vol. 31, pp. 540-542, 2010.
[4.18] W.-C. Lo, S.-J. Chang, C.-Y. Chang, and T.-S. Cao, "Impacts of gate structure on dynamic threshold SOI nMOSFETs," IEEE Electron Device Letters, vol. 23, pp. 497-499, 2002.
[4.19] H. Lin, J. Lin, and R. C. Chang, "Inversion-layer induced body current in SOI MOSFETs with body contacts," IEEE Electron Device Letters, vol. 24, pp. 111-113, 2003.
[4.20] S.-S. Chen, S. Huang-Lu, and T.-H. Tang, "Using layout technique and direct-tunneling mechanism to promote DC performance of partially depleted SOI devices," IEEE Transactions on Electron Devices, vol. 51, pp. 708-713, 2004.
[4.21] B.-J. Lee, J.-W. Park, K. Kim, C.-G. Yu, and J.-T. Park, "Comparison of hot carrier-induced RF performance degradation in H-gate and T-gate SOI MOSFETs," IEEE Electron device letters, vol. 26, pp. 112-114, 2005.
[4.22] C.-C. Cheng, J. Lin, T. Wang, T. Hsieh, J. Tzeng, Y. Jong, et al., "Physics and characterization of various hot-carrier degradation modes in LDMOS by using a three-region charge-pumping technique," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 358-363, 2006.
[5.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[5.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[5.3] H.-Y. Lu, P.-T. Liu, T.-C. Chang, and S. Chi, "Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays," IEEE electron device letters, vol. 27, pp. 743-745, 2006.
[5.4] K.-C. Chang, T.-M. Tsai, T.-C. Chang, K.-H. Chen, R. Zhang, Z.-Y. Wang, et al., "Dual ion effect of the lithium silicate resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 530-532, 2014.
[5.5] R. Zhang, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S.-Y. Huang, W.-J. Chen, et al., "Characterization of oxygen accumulation in indium-tin-oxide for resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 630-632, 2014.
[5.6] T.-J. Chu, T.-M. Tsai, T.-C. Chang, K.-C. Chang, R. Zhang, K.-H. Chen, et al., "Tri-resistive switching behavior of hydrogen induced resistance random access memory," IEEE Electron Device Letters, vol. 35, pp. 217-219, 2014.
[5.7] T. Nakamura, M. Yamamoto, H. Ishikawa, and M. Shinoda, "Punch-through MOSFET for high-speed logic," in Solid-State Circuits Conference. Digest of Technical Papers. 1978 IEEE International, 1978, pp. 22-23.
[5.8] K. Kim and A. A. Iliadis, "Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference," Solid-State Electronics, vol. 52, pp. 1589-1593, 2008.
[5.9] A. Chaudhry and M. J. Kumar, "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 99-109, 2004.
[5.10] G. Shahidi, A. Ajmera, F. Assaderaghi, R. Bolam, A. Bryant, M. Coffey, et al., "Mainstreaming of the SOI technology," in Proc. IEEE Int. SOI Conf, 1999, pp. 1-4.
[5.11] G. G. Shahidi, "SOI technology for the GHz era," in VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on, 2001, pp. 11-14.
[5.12] F. T. Brady, N. F. Haddad, and A. Edenfeld, "Method to prevent latch-up and improve breakdown volatge in SOI mosfets," ed: Google Patents, 1996.
[5.13] C.-C. Cheng, J. Lin, T. Wang, T. Hsieh, J. Tzeng, Y. Jong, et al., "Physics and characterization of various hot-carrier degradation modes in LDMOS by using a three-region charge-pumping technique," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 358-363, 2006.
[5.14] . Wang, C. Huang, P. Chou, S.-S. Chung, and T.-E. Chang, "Effects of hot carrier induced interface state generation in submicron LDD MOSFET's," IEEE Transactions on Electron Devices, vol. 41, pp. 1618-1622, 1994.
[5.15] L. Selmi, E. Sangiorgi, R. Bez, and B. Ricco, "Measurement of the hot hole injection probability from Si into SiO/sub 2/in p-MOSFETs," in Electron Devices Meeting, 1993. IEDM'93. Technical Digest., International, 1993, pp. 333-336.
[5.16] J. F. Chen, J. Lee, K.-M. Wu, T.-Y. Huang, C. Liu, and S. Hsu, "Off-state avalanche-breakdown-induced on-resistance degradation in lateral DMOS transistors," IEEE Electron Device Letters, vol. 28, pp. 1033-1035, 2007.
[5.17] S. Mahapatra, C. D. Parikh, V. R. Rao, C. R. Viswanathan, and J. Vasi, "A comprehensive study of hot-carrier induced interface and oxide trap distributions in MOSFETs using a novel charge pumping technique," IEEE Transactions on Electron Devices, vol. 47, pp. 171-177, 2000.
[5.18] P. Moens and G. Groeseneken, "Hot-carrier degradation phenomena in lateral and vertical DMOS transistors," IEEE Transactions on Electron Devices, vol. 51, pp. 623-628, 2004.
[5.19] E. Amat, T. Kauerauf, R. Degraeve, R. Rodriguez, M. Nafria, X. Aymerich, et al., "Competing degradation mechanisms in short-channel transistors under channel hot-carrier stress at elevated temperatures," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 454-458, 2009.
[5.20] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, "Hot-electron-induced MOSFET degradation—Model, monitor, and improvement," IEEE Transactions on Electron Devices, vol. 32, pp. 375-385, 1985. J. F. Chen, J. Lee, K.-M. Wu, T.-Y. Huang, and C. Liu, "Effect of Drift-Region Concentration on Hot-Carrier-Induced Degradation in nLDMOS Transistors," IEEE Electron Device Letters, vol. 29, pp. 771-774, 2008.
[5.21] W. Sun, C. Zhang, S. Liu, T. Huang, C. Yu, W. Su, et al., "Hot-carrier-induced forward and reverse saturation current degradations for the n-type symmetric EDMOS transistor," IEEE Electron Device Letters, vol. 35, pp. 690-692, 2014.
[5.22] Y.-H. Huang, J. Shih, Y. Lee, S. Hsieh, C. Liu, K. Wu, et al., "Investigation of monotonous increase in saturation-region drain current during hot carrier stress in N-type Lateral Diffused MOSFET with STI," in Reliability Physics Symposium (IRPS), 2010 IEEE International, 2010, pp. 170-174.
[5.23] K.-M. Wu, J.-F. Chen, Y.-K. Su, J. Lee, K. Lin, J. Shih, et al., "Effects of gate bias on hot-carrier reliability in drain extended metal-oxide-semiconductor transistors," Applied physics letters, vol. 89, pp. 18352-2, 2006.
[5.24] P. Aminzadeh, M. Alavi, and D. Scharfetter, "Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias," in VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on, 1998, pp. 178-179.
[6.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[6.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[6.3] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, et al., "Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress," Applied Physics Letters, vol. 97, p. 112104, 2010.
[6.4] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials today, vol. 14, pp. 608-615, 2011.
[6.5] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, et al., "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films," Applied Physics Letters, vol. 96, p. 262110, 2010.
[6.6] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, et al., "Redox Reaction Switching Mechanism in RRAM Device With Structure," IEEE Electron Device Letters, vol. 32, pp. 545-547, 2011.
[6.7] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, et al., "CMOS scaling into the nanometer regime," Proceedings of the IEEE, vol. 85, pp. 486-504, 1997.
[6.8] Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, et al., "Conventional n-channel MOSFET devices using single layer HfO/sub 2/and ZrO/sub 2/as high-k gate dielectrics with polysilicon gate electrode," in Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International, 2001, pp. 20.2. 1-20.2. 4.
[6.9] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-H. Ho, T.-Y. Hsieh, et al., "Hot carrier effect on gate-induced drain leakage current in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 99, p. 012106, 2011.
[6.10] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, Y.-C. Hung, W.-H. Lo, et al., "Charge trapping induced frequency-dependence degradation in n-MOSFETs with high-k/metal gate stacks," Thin Solid Films, vol. 520, pp. 1511-1515, 2011.
[6.11] R. R. Troutman, "VLSI limitations from drain-induced barrier lowering," IEEE Journal of Solid-State Circuits, vol. 14, pp. 383-391, 1979.
[6.12] F.-C. Hsu, R. S. Muller, and C. Hu, "A simplified model of short-channel MOSFET characteristics in the breakdown mode," IEEE Transactions on Electron Devices, vol. 30, pp. 571-576, 1983.
[6.13] V. De and S. Borkar, "Technology and design challenges for low power and high performance," in Proceedings of the 1999 international symposium on Low power electronics and design, 1999, pp. 163-168.
[6.14] V. Subramanian, A. Mercha, B. Parvais, J. Loo, C. Gustin, M. Dehan, et al., "Impact of fin width on digital and analog performances of n-FinFETs," Solid-State Electronics, vol. 51, pp. 551-559, 2007.
[6.15] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, 2000.
[6.16] T.-s. Park, S. Choi, D. Lee, J. Yoo, B. Lee, J. Kim, et al., "Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 135-136.
[6.17] T.-S. Park, H. J. Cho, J. D. Choe, I. H. Cho, D. Park, E. Yoon, et al., "Characteristics of body-tied triple-gate pMOSFETs," IEEE electron device letters, vol. 25, pp. 798-800, 2004.
[6.18] J. W. Lee, Y. Sasaki, M. J. Cho, M. Togo, G. Boccardi, R. Ritzenthaler, et al., "Plasma doping and reduced crystalline damage for conformally doped fin field effect transistors," Applied Physics Letters, vol. 102, p. 223508, 2013.
[6.19] K. Eriguchi, "Modeling of plasma-induced damage during the etching of ultimately-scaled transistors in ULSI circuits--A model prediction of damage in three dimensional structures," in APS Meeting Abstracts, 2014, p. 2004.
[6.20] P. Aminzadeh, M. Alavi, and D. Scharfetter, "Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias," in VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on, 1998, pp. 178-179.
[6.21] T. Kamata, K. Tanabashi, and K. Kobayashi, "Substrate current due to impact ionization in MOS-FET," Japanese Journal of Applied Physics, vol. 15, p. 1127, 1976.
[6.22] S. Ramaswamy, A. Amerasekera, and M.-C. Chang, "A unified substrate current model for weak and strong impact ionization in sub-0.25/spl mu/m NMOS devices," in Electron Devices Meeting, 1997. IEDM'97. Technical Digest., International, 1997, pp. 885-888.
[6.23] T. Irisawa, T. Numata, N. Sugiyama, and S.-i. Takagi, "On the origin of increase in substrate current and impact ionization efficiency in strained-Si n-and p-MOSFETs," IEEE Transactions on Electron Devices, vol. 52, pp. 993-998, 2005.
[6.24] T. Chan, P. Ko, and C. Hu, "A simple method to characterize substrate current in MOSFET's," IEEE Electron Device Letters, vol. 5, pp. 505-507, 1984.
[6.25] W.-C. Lee and C. Hu, "Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction-and valence-band electron and hole tunneling," IEEE Transactions on Electron Devices, vol. 48, pp. 1366-1373, 2001.
[6.26] K. F. Schuegraf and C. Hu, "Hole injection SiO 2 breakdown model for very low voltage lifetime extrapolation," IEEE Transactions on Electron Devices, vol. 41, pp. 761-767, 1994.
[6.27] H. Lin, J. Lin, and R. C. Chang, "Inversion-layer induced body current in SOI MOSFETs with body contacts," IEEE Electron Device Letters, vol. 24, pp. 111-113, 2003.
[6.28] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-C. Chen, C.-C. Tsai, et al., "On the origin of hole valence band injection on GIFBE in PD SOI n-MOSFETs," IEEE Electron Device Letters, vol. 31, pp. 540-542, 2010.
[6.29] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, F.-Y. Jian, W.-H. Lo, et al., "On the origin of gate-induced floating-body effect in PD SOI p-MOSFETs," IEEE Electron Device Letters, vol. 32, pp. 847-849, 2011.
[6.30] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-C. Chen, C.-T. Tsai, et al., "Enhanced gate-induced floating-body effect in PD SOI MOSFET under external mechanical strain," Surface and Coatings Technology, vol. 205, pp. 1470-1474, 2010.
[6.31] W.-h. Lo, T.-C. Chang, C.-H. Dai, W.-L. Chung, C.-E. Chen, S.-H. Ho, et al., "Impact of mechanical strain on GIFBE in PD SOI p-MOSFETs as indicated from NBTI degradation," IEEE Electron Device Letters, vol. 33, pp. 303-305, 2012.
[6.32] W. Zhu, T.-P. Ma, T. Tamagawa, J. Kim, and Y. Di, "Current transport in metal/hafnium oxide/silicon structure," IEEE Electron Device Letters, vol. 23, pp. 97-99, 2002.
[6.33] C.-T. Sah, R. N. Noyce, and W. Shockley, "Carrier generation and recombination in pn junctions and pn junction characteristics," Proceedings of the IRE, vol. 45, pp. 1228-1243, 1957.
[6.34] D. J. Dumin and J. R. Maddux, "Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides," IEEE Transactions on Electron Devices, vol. 40, pp. 986-993, 1993.
[6.35] S.-H. Ho, T.-C. Chang, Y.-s. Lu, W.-H. Lo, C.-E. Chen, J.-Y. Tsai, et al., "Analysis of anomalous traps measured by charge pumping technique in HfO2/metal gate n-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 101, p. 233509, 2012.
[7.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[7.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[7.3] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, et al., "Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress," Applied Physics Letters, vol. 97, p. 112104, 2010.
[7.4] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials today, vol. 14, pp. 608-615, 2011.
[7.5] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, et al., "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films," Applied Physics Letters, vol. 96, p. 262110, 2010.
[7.6] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, et al., "Redox Reaction Switching Mechanism in RRAM Device With Structure," IEEE Electron Device Letters, vol. 32, pp. 545-547, 2011.
[7.7] M. Cassé, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, et al., "Carrier transport in HfO 2/metal gate MOSFETs: physical insight into critical parameters," IEEE Transactions on Electron Devices, vol. 53, pp. 759-768, 2006.
[7.8] S.-H. Ho, T.-C. Chang, C.-W. Wu, W.-H. Lo, C.-E. Chen, J.-Y. Tsai, et al., "Investigation of an anomalous hump in gate current after negative-bias temperature-instability in HfO2/metal gate p-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 102, p. 012103, 2013.
[7.9] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, et al., "Review on high-k dielectrics reliability issues," IEEE Transactions on Device and materials Reliability, vol. 5, pp. 5-19, 2005.
[7.10] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, et al., "Origin of the threshold voltage instability in SiO 2/HfO 2 dual layer gate dielectrics," IEEE Electron Device Letters, vol. 24, pp. 87-89, 2003.
[7.11] H. Harris, R. Choi, J. Sim, C. Young, P. Majhi, B. Lee, et al., "Electrical observation of deep traps in high-κ/metal gate stack transistors," IEEE electron device letters, vol. 26, pp. 839-841, 2005.
[7.12] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, et al., "Origin of the threshold voltage instability in SiO 2/HfO 2 dual layer gate dielectrics," IEEE Electron Device Letters, vol. 24, pp. 87-89, 2003.
[7.13] F.-C. Hsu, R. S. Muller, and C. Hu, "A simplified model of short-channel MOSFET characteristics in the breakdown mode," IEEE Transactions on Electron Devices, vol. 30, pp. 571-576, 1983.
[7.14] M. Saremi, A. Afzali-Kusha, and S. Mohammadi, "Ground plane fin-shaped field effect transistor (GP-FinFET): A FinFET for low leakage power circuits," Microelectronic Engineering, vol. 95, pp. 74-82, 2012.
[7.15] M. Saremi, B. Ebrahimi, A. A. Kusha, and M. Saremi, "Process variation study of ground plane SOI MOSFET," in Quality Electronic Design (ASQED), 2010 2nd Asia Symposium on, 2010, pp. 66-69.
[7.16] T.-S. Park, H. J. Cho, J. D. Choe, I. H. Cho, D. Park, E. Yoon, et al., "Characteristics of body-tied triple-gate pMOSFETs," IEEE electron device letters, vol. 25, pp. 798-800, 2004.
[7.17] J. Zhang and W. Eccleston, "Positive bias temperature instability in MOSFETs," IEEE Transactions on Electron Devices, vol. 45, pp. 116-124, 1998.
[7.18] M. Cho, M. Aoulaiche, R. Degraeve, B. Kaczer, J. Franco, T. Kauerauf, et al., "Positive and negative bias temperature instability on sub-nanometer EOT high-k MOSFETs," in Reliability Physics Symposium (IRPS), 2010 IEEE International, 2010, pp. 1095-1098.
[7.19] J. H. Stathis, M. Wang, and K. Zhao, "Reliability of advanced high-k/metal-gate n-FET devices," Microelectronics Reliability, vol. 50, pp. 1199-1202, 2010.
[7.20] S.-H. Ho, T.-C. Chang, Y.-H. Lu, C.-E. Chen, J.-Y. Tsai, K.-J. Liu, et al., "Investigation of abnormal negative threshold voltage shift under positive bias stress in input/output n-channel metal-oxide-semiconductor field-effect transistors with TiN/HfO2 structure using fast IV measurement," Applied Physics Letters, vol. 104, p. 113503, 2014.
[7.21] Y.-L. Yang, W. Zhang, T.-S. Yen, J.-J. Hong, J.-C. Wong, C.-C. Ku, et al., "Examination of hot-carrier stress induced degradation on fin field-effect transistor," Applied Physics Letters, vol. 104, p. 083505, 2014.
[7.22] H. J. Lim, Y. Kim, I. S. Jeon, J. Yeo, B. Im, S. Hong, et al., "Impact of the crystallization of the high-k dielectric gate oxide on the positive bias temperature instability of the n-channel metal-oxide-semiconductor field emission transistor," Applied Physics Letters, vol. 102, p. 232909, 2013.
[7.23] M. Cho, P. Roussel, B. Kaczer, R. Degraeve, J. Franco, M. Aoulaiche, et al., "Channel Hot Carrier Degradation Mechanism in Long/Short Channel-FinFETs," IEEE Transactions on Electron Devices, vol. 60, pp. 4002-4007, 2013.
[7.24] A. Kerber and E. A. Cartier, "Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 147-162, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code