Responsive image
博碩士論文 etd-0708116-144058 詳細資訊
Title page for etd-0708116-144058
論文名稱
Title
鐵磁性材料 MFeB (M= Cu、Ni、Nd、Sn)的合成 及分析與應用在4-硝基苯酚(4-Nitrophenol , p-NP)的氫化反應
Hydrogenation of 4-Nitrophenol (p-NP) catalyzed by Ferromagnetic material MFeB (M= Cu、Ni、Nd、Sn)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-04
繳交日期
Date of Submission
2016-08-08
關鍵字
Keywords
氫化反應、鐵磁性材料、磁性奈米材料
Magnetic nanomaterials, Ferromagnetic material, hydrogenation reaction
統計
Statistics
本論文已被瀏覽 5723 次,被下載 0
The thesis/dissertation has been browsed 5723 times, has been downloaded 0 times.
中文摘要
磁性物質的發現及應用,對人類生活帶來無限的便利,日常生活物品電器等,都需要依賴磁性物質才可發揮其功能,但一般傳統的磁性物質大都需要在高溫高壓下製成,因此本實驗希望可以在常溫常壓下製成且利用簡單、便宜的合成方式達到可大量生產,所以我們選用共沉澱的方法。因此我們藉由合金的修飾降低FexOy 的生成。本實驗改良 Fe3O4 的合成,在外加磁場下除了增強我們的飽和磁化率( Ms ),也產生矯頑磁力( Hc )及殘留磁束密度(Br )的效果,從實驗結果 XPS可以清楚的看出元素(Cu,Ni,Nd、Sn),證明元素(Cu,Ni,Nd、Sn)確實有合成上去,光繞射分析儀(XRD)結果顯示出 FeB/FexOy 轉變成 MFeB (M= Cu、Ni 、Nd、Sn),FexOy 訊號有明顯變弱,透過超導量子干涉儀(SQUID)量測結果NiFeB的磁性是最高的,飽和磁化率( Ms )232(emu/cc),我們希望未來將磁性材料應用在醫療以及血清製造(如磁場感測器、光電元件、揚聲器等)重多方面的應用。此外,我們利用鐵磁性材料 MFeB (M= Cu、Ni、Nd、Sn) 進行氫化 4-硝基苯酚(p-NP),發現催化活性大都取決於催化劑的組成和形態,實驗催化效果 CuFeB > NdFeB > NiFeB > SnFeB,CuFeB 顯現出優於其他鐵磁性催化劑其反應速率為2.7481 K / (min -1 ),CuFeB alloy 有優越的催化效能,我們歸因於 Cu 原子與 Fe 原子的協同效應,以及最主要是因為Cu 2+ 與Fe 3+ 兩離子存在於CuFeB alloy結構中,然而 Cu + -Cu 2+ 及 Fe 2+ -Fe 3+ 的電子轉移,提升了催化活性,而在重複使用也顯示出良好的穩定性;在五個連續的實驗中它能在兩分鐘內有超過 63%的轉換效率,這結果表明 CuFeB 有潛力用於環境廢水處理的高效催化劑。
Abstract
Magnetic materials are used in a wide range of applications and devices. Electronic appliances, for example, rely on magnetic materials for their operation and proper function. Generally, magnetic materials are created under conditions of high temperature and pressure. The purpose of this study is to produce magnetic materials at room temperature and atmospheric pressure using a simple, inexpensive, and scalable procedure and to test their magnetic and catalytic properties. The co-precipitation method is performed by reducing FexOy using an alloy. In this study, we performed an improved synthesis of Fe3O4 under a magnetic field, which in addition to strengthening our saturation magnetization (Ms), also produced Hc and Br. XPS results showed that all elements (Cu, Ni, Nd, Sn) were successfully incorporated and XRD confirmed that FeB/FexOy was converted to MFeB (M = Cu、Ni,、Nd、Sn). Fex Oy was not observedfollowing the reactions. Using a Superconducting Quantum Interference Device(SQUID), we determined that NiFeB exhibited the strongest magnetic strength with a saturation magnetization (Ms) of 232 (emu/cc). These magnetic materials may be good candidates for use in medical and serum manufacturing (such as magnetic field sensors,optoelectronic components, speakers) and many other applications. In a subsequent catalysis experiment, we used the ferromagnetic material MFeB (M = Cu, Ni, Nd, Sn) to hydrogenate 4-nitrophenol (p-NP), and found that the catalytic activity depended on the composition and morphology of the catalyst. The results of our experiment showed CuFeB> NdFeB > NiFeB> SnFeB, where CuFeB had a much higher reaction rate than the other alloys (2.7481 K / (min-1). The superior catalytic effect of CuFeB alloy is attributed to the synergistic effect of Cu and Fe atoms - Cu 2+ and Fe 3+ present in CuFeB alloy structure and Cu + -Cu 2+ and Fe 2+ -Fe 3+ electron transfer. The CuFeB alloy also showed good stability with repeated experimental cycling. In five consecutive experiments, CuFeB achieved over 63% conversion efficiency in two minutes. These results demonstrate the potential of CuFeB as an efficient catalyst for waste water remediation.
目次 Table of Contents
目錄

論文審定書 i
摘要 ii
abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1磁性奈米粒子簡介 1
1-2 磁性的來源 3
1-3 磁性理論 3
1-4 磁性物質的分類12-15 4
第二章 儀器原理 11
2-1 X光光電子光譜 ( X-ray photoelectron spectrometry, XPS) 11
2-1-1原理19-20 11
2-1-2使用儀器與設定參數 13
2-2紫外/可見光光譜儀 ( Ultraviolet-Visible Spectrometer, UV-Vis ) 13
2-2-1 紫外/可見光光譜 ( Ultraviolet-Visible Spectrometry, UV-Vis )22 13
2-2-2比爾定律 ( Beer’s Law ) 15
2-2-3 使用儀器與設定參數 16
2-3 穿透式電子顯微鏡 16
2-4 X-ray 粉末繞射儀 18
2-5 超導量子干涉儀 ( Superconducting quantum interference device, SQUID )24 19
第三章 鐵磁性材料MFeB alloy (M= Cu、Ni、Nd、Sn) 的合成與分析 21
3-1 前言 21
3-2 文獻回顧 22
3-2-1 磁性奈米材料製備方法 22
3-2-2 磁滯現象16, 58 28
3-2-3 磁異向性59-60 30
3-3 實驗部分 32
3-3-1 實驗藥品 32
3-3-2 實驗步驟 33
3-4-2 NiFeB鐵磁性材料的特徵分析 36
3-4-3 NdFeB鐵磁性材料的特徵分析 39
3-4-4 SnFeB鐵磁性材料的特徵分析 41
3-4-5 以XPS鑑定MFeB (M =Cu、Ni、Nd、Sn)的鍵結方式 44
3-4-6 MFeB (M =Cu、Ni、Nd、Sn)鐵磁性材料的磁性特性 50
3-4-6 比較不同磁性材料磁滯曲線 52
3-4-7 比較磁性材料NiFeB與CuFeB 54
3-5 結論 56
第四章 鐵磁性材料MFeB (M= Cu、Ni、Nd、Sn) 應用在4-硝基苯酚(p-NP)的氫化反應 57
4-1 前言 57
4-2 文獻回顧 59
4-2-1 硝基苯酚異構物之特性 59
4-2-2 對-硝基苯酚基本性質 62
4-2-3 對-硝基苯酚之用途 63
4-2-4對-硝基苯酚對人體之危害 64
4-2-5 去除硝基苯酚的方法 65
4-3 實驗部分 67
4-3-1 實驗藥品 67
4-3-2 實驗步驟 68
4-4 實驗結果與討論 69
4-4-1 CuFeB鐵磁性材料的特徵分析 69
4-4-2 對硝基苯酚( p-NP )的催化氫化反應測試 71
4-4-3 MFeB (M= Cu、Ni、Nd、Sn) 鐵磁性催化劑在4-硝基苯酚( p-NP )的氫化反應 74
4-4-4 不同濃度的CuFeB進行p-NP的氫化反應 78
4-4-5 還原對硝基苯酚可能的機制 79
4-4-6 反應動力學分析 ( Kinetics of Hydrogenation reaction ) 80
4-4-7 探討其他催化劑與CuFeB及 CuFeO在p-NP的氫化反應 84
4-4-8 CuFeB催化劑還原對硝基苯酚重複使用興探討 86
4-5 結論 88
參考文獻 89












圖目錄
圖1-1 磁性奈米材料研究橫跨物理、化學及生物領域 2
圖1-2 磁性物質分類16 5
圖1-3 順磁性物質磁矩排列方式以及磁化率倒數與溫度的關係 6
圖1-4 反磁性抗磁圖及磁化率倒數與溫度的關係 6
圖1-5 鐵磁性物質磁矩排列方式以及磁化率倒數與溫度的關係 8
圖1-6 典型的鐵磁性物質其磁滯曲線圖 8
圖1-7反鐵磁性物質磁矩排列方式以及磁化率倒數與溫度的關係 9
圖1-8 亞鐵磁性物質磁矩排列方式以及磁化率倒數與溫度的關係 10
圖2 1 X光光電子光譜工作示意圖 12
圖2 2 X光光電子光譜機制示意圖 12
圖2-3 電磁波頻譜範圍22 14
圖2 4分子的電子能階 15
圖2 5 基本的TEM光學元件布局圖 17
圖2 6 (a)(b) 為TEM圖 (c) 高解析度TEM圖 (d) 為繞射圖像 18
圖2 7 布拉格定律示意圖 19
圖2-8 超導量子干涉儀(國立中山大學貴儀中心) 20
圖3-1 沒有外加磁場時的磁田 29
圖3-2 在外加磁場時的磁田 29
圖3-3:磁滯曲線示意圖 30
圖3-4 MFeB (M= Cu、Ni、Nd、Sn) 鐵磁性材料製備的示意圖 33
圖3-5 FeB與CuFeB鐵磁性材料的XRD繞射圖譜 34
圖3-6 CuFeB鐵磁性材料的光電子光譜(XPS)圖 35
圖3-7 CuFeB鐵磁性材料TEM圖 36
圖3-8 FeB與NiFeB鐵磁性材料的XRD繞射圖譜 37
圖3-9 NiFeB鐵磁性材料的光電子光譜(XPS)圖 38
圖3-10 NiFeB鐵磁性材料TEM圖 38
圖3-11 FeB與NdFeB鐵磁性材料的XRD繞射圖譜 39
圖3-12 NdFeB鐵磁性材料的光電子光譜(XPS)圖 40
圖3-13 NdFeB鐵磁性材料TEM圖 41
圖3-14 FeB與SnFeB鐵磁性材料的XRD繞射圖譜 42
圖3-15 SnFeB鐵磁性材料的光電子光譜(XPS)圖 43
圖3-16 SnFeB鐵磁性材料TEM圖 43
圖3-18 CuFeB的電子轉換與鍵結情況 45
圖3-19 比較FeB與CuFeB的光電子光譜(XPS)圖 46
圖3-20 NiFeB的電子轉換與鍵結情況 47
圖3-21 比較FeB與NdFeB的光電子光譜(XPS)圖 48
圖3-22 NdFeB的電子轉換與鍵結情況 48
圖3-23 比較FeB與SnFeB的光電子光譜(XPS)圖 49
圖3-24 SnFeB的電子轉換與鍵結情況 50
圖3-25 催化劑(a)CuFeB (b) NiFeB (c)SnFeB (d)NdFeB鐵磁性材料在300K下的磁滯曲線圖與使用外部磁鐵(左上)磁性材料分離系統 52
圖3-26 MFeB (M =Cu、Ni、Nd、Sn)鐵磁性材料的SQUID圖譜比較 53
圖3-27 MFeB (M =Cu、Ni、Nd、Sn)的Fe 2p光電子光譜(XPS)圖 54
圖3-28 鐵磁性材料NiFeB改變不同比例的SQUID圖譜 55
圖3-29 鐵磁性材料CuFeB改變不同比例的SQUID圖譜 55
圖4-1 p-Nitrophenol之化學結構圖 62
圖4-2 對-硝基苯酚於人體內之代謝途徑 65
圖4-3 MFeB (M= Cu、Ni、Nd、Sn) 鐵磁性催化劑的合成示意圖 68
圖4-4 CuFeB鐵磁性材料氫化反應前後XRD 70
圖4-5 CuFeB鐵磁性材料氫化反應前後(a) Fe 2p (b) Cu 2p (c) B 1s 之光電子光譜圖 70
圖4-6偵測4-硝基苯酚氫化反應的實驗方法 71
圖4-7 在加入NaBH4前後的與還原產物p-AP的UV吸收光譜 72
圖4-8 無添加任何催化劑進行十小時p-NP氫化反應變化 73
圖4-9對硝基苯酚在催化劑(a)SnFeB (b) NiFeB (c)NdFeB (d) CuFeB下氫化反應的UV-vis吸收光譜圖 76
圖4-10 反應兩分鐘後4-硝基苯酚在CuFeB催化劑的顏色變化 77
圖4-11一定時間下加入MFeB (M= Cu、Ni、Nd、Sn) 鐵磁性催化劑反應在p-NP的降解過程 77
圖4-12 MFeB (M =Cu、Ni、Nd、Sn) 的Fe 2p光電子光譜(XPS)圖 78
圖4-13 不同濃度的CuFeB進行p-NP的氫化反應 79
圖4-14 催化還原對硝基苯酚可能機制 80
圖4-15不同催化劑進行p-NP氫化反應的動力學分析 82
圖4-16不同濃度的CuFeB催化劑進行p-NP氫化反應的動力學分析 83
圖4-17在不同催化劑(Fe2O3,CuO和CuFe2O4)用於氫化p-NP 的ln(C/C0)對反應時間的曲線圖(2016年,GuO等人) 111 85
圖4-18比較催化劑CuFeO與 CuFeB用於氫化p-NP 的ln(C/C0)對反應時間的曲線圖 85
圖4-19 CuFeB催化劑使用性探討 87


表目錄
表3-1 綜合比較鐵磁性奈米粒子的合成方式 28
表3-2 製備鐵磁性材料MFeB (M= Cu、Ni、Nd、Sn) 所需要藥品列表 32
表3-3 鐵磁性材料MFeB (M =Cu、Ni、Nd、Sn)磁性比較 52
表4-1 硝基苯酚異構物之物化特性 60
表4-2 硝基酚化合物之生物毒性恕限值 60
表4-3美國環境保護署優先管制之11種酚類化合物 61
表4-4 對-硝基苯酚之基本物理化學性質 63
表4-5對硝基苯酚氫化反應所需要藥品列表 67
表4-6 不同催化劑氫化反應的反應速率常數K 82
表4-7 不同濃度的CuFeB催化劑氫化反應的反應速率常數K 83
表4-8比較CuFeO和CuFeB催化劑氫化反應的反應速率常數K 86
參考文獻 References
參考文獻
1. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y., Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12, 693-713.
2. Daniel, M.-C.; Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293-346.
3. Hamley, I., Nanotechnology with Soft Materials. Angew. Chem. Int. Ed. 2003, 42, 1692-1712.
4. Pankhurst, Q. A.; Connolly, J.; Jones, S.; Dobson, J., Applications of Magnetic Nanoparticles in Biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167.
5. Sun, S.; Murray, C.; Weller, D.; Folks, L.; Moser, A., Monodisperse Fept Nanoparticles and Ferromagnetic Fept Nanocrystal Superlattices. Science 2000, 287, 1989-1992.
6. Charles, S. W.; Popplewell, J., Properties and Applications of Magnetic Liquids. Endeavour 1982, 6, 153-161.
7. Uhlen, M., Magnetic Separation of DNA. Nature 1989, 340, 733.
8. Miller, M.; Prinz, G.; Cheng, S.-F.; Bounnak, S., Detection of a Micron-Sized Magnetic Sphere Using a Ring-Shaped Anisotropic Magnetoresistance-Based Sensor: A Model for a Magnetoresistance-Based Biosensor. Appl. Phys. Lett. 2002, 81, 2211-2213.
9. Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J.-F.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H.; Dubois, P., Molecular Composition of Iron Oxide Nanoparticles, Precursors for Magnetic Drug Targeting, as Characterized by Confocal Raman Microspectroscopy. Analyst 2005, 130, 1395-1403.
10. Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V., Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents. Molecular pharmaceutics 2005, 2, 194-205.
11. Bulte, J. W.; Douglas, T.; Witwer, B.; Zhang, S.-C.; Strable, E.; Lewis, B. K.; Zywicke, H.; Miller, B.; van Gelderen, P.; Moskowitz, B. M., Magnetodendrimers Allow Endosomal Magnetic Labeling and in Vivo Tracking of Stem Cells. Nat. Biotechnol. 2001, 19, 1141-1147.
12. Bulte, J. W.; Kraitchman, D. L., Iron Oxide Mr Contrast Agents for Molecular and Cellular Imaging. NMR Biomed. 2004, 17, 484-499.
13. Gentile, M.; Rogers, W.; Mannan, M., Development of a Fuzzy Logic-Based Inherent Safety Index. Process Safety and Environmental Protection 2003, 81, 444-456.
14. Resnick, R.; Halliday, D.; Walker, J., Fundamentals of Physics; John Wiley, 1988.
15. Morrish, A. H., The Physical Principles of Magnetism. The Physical Principles of Magnetism, by Allan H. Morrish, pp. 696. ISBN 0-7803-6029-X. Wiley-VCH, January 2001. 2001, 1.
16. 金重勳, 磁性技術手冊. 磁性技術協會 (中國台灣): 2002.
17. Schwertmann, U.; Cornell, R. M., Iron Oxides in the Laboratory: Preparation and Characterization; John Wiley & Sons, 2008.
18. Kittel, C., Introduction to Solid State Physics; Wiley, 2005.
19. Swartz Jr, W. E., X-Ray Photoelectron Spectroscopy. Anal. Chem. 1973, 45, 788A-800a.
20. Paterson, E.; Swaffield, R., X-Ray Photoelectron Spectroscopy. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, Springer: 1994; pp 226-259.
21. Crist, B. V., A Review of Xps Data-Banks. XPS Reports 2007, 1.
22. Zohora, N., Shape Controlled Biosynthesis of Gold Nanoprisms Using Cinnamomum Tamala Leaf Extract for Mercuric Ion Sensing. 2014.
23. Aromal, S. A.; Vidhu, V.; Philip, D., Green Synthesis of Well-Dispersed Gold Nanoparticles Using Macrotyloma Uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 85, 99-104.
24. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題 1994.
25. Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E., Magnetic Nanoparticle Design for Medical Applications. Prog. Solid State Chem. 2006, 34, 237-247.
26. Li, Z.; Wei, L.; Gao, M.; Lei, H., One‐Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles. Adv. Mater. 2005, 17, 1001-1005.
27. Chikazumi, S.; Taketomi, S.; Ukita, M.; Mizukami, M.; Miyajima, H.; Setogawa, M.; Kurihara, Y., Physics of Magnetic Fluids. J. Magn. Magn. Mater. 1987, 65, 245-251.
28. Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bönnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F., Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angew. Chem. 2004, 116, 4403-4406.
29. Tsang, S. C.; Caps, V.; Paraskevas, I.; Chadwick, D.; Thompsett, D., Magnetically Separable, Carbon‐Supported Nanocatalysts for the Manufacture of Fine Chemicals. Angew. Chem. 2004, 116, 5763-5767.
30. Hyeon, T., Chemical Synthesis of Magnetic Nanoparticles. Chem. Commun. 2003, 927-934.
31. Elliott, D. W.; Zhang, W.-X., Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environmental Science & Technology 2001, 35, 4922-4926.
32. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064-2110.
33. Miller, T. M.; Neenan, T. X., Convergent Synthesis of Monodisperse Dendrimers Based Upon 1, 3, 5-Trisubstituted Benzenes. Chem. Mater. 1990, 2, 346-349.
34. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847-4854.
35. Tominaga, M.; Matsumoto, M.; Soejima, K.; Taniguchi, I., Size Control for Two-Dimensional Iron Oxide Nanodots Derived from Biological Molecules. J. Colloid Interface Sci. 2006, 299, 761-765.
36. Babes, L.; Denizot, B. t.; Tanguy, G.; Le Jeune, J. J.; Jallet, P., Synthesis of Iron Oxide Nanoparticles Used as Mri Contrast Agents: A Parametric Study. J. Colloid Interface Sci. 1999, 212, 474-482.
37. Vayssieres, L.; Chanéac, C.; Tronc, E.; Jolivet, J. P., Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. J. Colloid Interface Sci. 1998, 205, 205-212.
38. Ibern-Gómez, M.; Roig-Pérez, S.; Lamuela-Raventós, R. M.; de la Torre-Boronat, M. C., Resveratrol and Piceid Levels in Natural and Blended Peanut Butters. J. Agric. Food. Chem. 2000, 48, 6352-6354.
39. Sun, S. In Zeng Ha M, Chem. Soc, 2002; pp 8204-8205.
40. Gupta, A. K.; Wells, S., Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. NanoBioscience, IEEE Transactions on 2004, 3, 66-73.
41. Wang, J.; Sun, J.; Sun, Q.; Chen, Q., One-Step Hydrothermal Process to Prepare Highly Crystalline Fe 3 O 4 Nanoparticles with Improved Magnetic Properties. Mater. Res. Bull. 2003, 38, 1113-1118.
42. Li, Y.; Liao, H.; Qian, Y., Hydrothermal Synthesis of Ultrafine Α-Fe 2 O 3 and Fe 3 O 4 Powders. Mater. Res. Bull. 1998, 33, 841-844.
43. Gobe, M.; Kon-No, K.; Kandori, K.; Kitahara, A., Preparation and Characterization of Monodisperse Magnetite Sols in Wo Microemulsion. J. Colloid Interface Sci. 1983, 93, 293-295.
44. Inouye, K.; Endo, R.; Otsuka, Y.; Miyashiro, K.; Kaneko, K.; Ishikawa, T., Oxygenation of Ferrous Ions in Reversed Micelle and Reversed Microemulsion. The Journal of Physical Chemistry 1982, 86, 1465-1469.
45. Lee, Y.; Lee, J.; Bae, C. J.; Park, J. G.; Noh, H. J.; Park, J. H.; Hyeon, T., Large‐Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Adv. Funct. Mater. 2005, 15, 503-509.
46. Lee, K.; Sorensen, C.; Klabunde, K.; Hadjipanayis, G., Synthesis and Characterization of Stable Colloidal Fe 3 O 4 Particles in Water-in-Oil Microemulsions. Magnetics, IEEE Transactions on 1992, 28, 3180-3182.
47. Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B., Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir 1999, 15, 1945-1951.
48. Stecker, M. M.; Benedek, G. B., Theory of Multicomponent Micelles and Microemulsions. The Journal of Physical Chemistry 1984, 88, 6519-6544.
49. Nirmal, M.; Brus, L., Luminescence Photophysics in Semiconductor Nanocrystals. Acc. Chem. Res. 1999, 32, 407-414.
50. Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H., Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures. Adv. Funct. Mater. 2002, 12, 653-664.
51. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc. 2001, 123, 12798-12801.
52. Woo, K.; Hong, J.; Ahn, J.-P., Synthesis and Surface Modification of Hydrophobic Magnetite to Processible Magnetite@ Silica-Propylamine. J. Magn. Magn. Mater. 2005, 293, 177-181.
53. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G., Monodisperse Mfe2o4 (M= Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 273-279.
54. Li, Z.; Sun, Q.; Gao, M., Preparation of Water‐Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2‐Pyrrolidone: Mechanism Leading to Fe3o4. Angew. Chem. Int. Ed. 2005, 44, 123-126.
55. Jana, N. R.; Chen, Y.; Peng, X., Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals Via a Simple and General Approach. Chem. Mater. 2004, 16, 3931-3935.
56. Li, Z.; Chen, H.; Bao, H.; Gao, M., One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals. Chem. Mater. 2004, 16, 1391-1393.
57. Lu, A. H.; Salabas, E. e. L.; Schüth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.
58. Chang, C.-Y., Electric Properties of Composite Materials Thin Films on Ferroelectric Materials Prepared by Sputtering. 2005.
59. Cullity, B. D.; Graham, C. D., Introduction to Magnetic Materials; John Wiley & Sons, 2011.
60. Hallauer, A. R.; Carena, M. J., Maize; Springer, 2009.
61. Prakash, R.; Fanselau, K.; Ren, S.; Mandal, T. K.; Kübel, C.; Hahn, H.; Fichtner, M., A Facile Synthesis of a Carbon-Encapsulated Fe3o4 Nanocomposite and Its Performance as Anode in Lithium-Ion Batteries. Beilstein journal of nanotechnology 2013, 4, 699-704.
62. Fu, L.-S.; Jiang, J.-T.; Xu, C.-Y.; Zhen, L., Synthesis of Hexagonal Fe Microflakes with Excellent Microwave Absorption Performance. CrystEngComm 2012, 14, 6827-6832.
63. Wang, A.; Men, H.; Zhao, C.; Chang, C.; Li, R.-W.; Wang, X., Crystallization Behavior of Fesibpcu Nanocrystalline Soft-Magnetic Alloys with High Fe Content. Science of Advanced Materials 2015, 7, 2721-2725.
64. Ethiraj, A. S.; Kang, D. J., Synthesis and Characterization of Cuo Nanowires by a Simple Wet Chemical Method. Nanoscale research letters 2012, 7, 1-5.
65. Su, D.; Xie, X.; Dou, S.; Wang, G., Cuo Single Crystal with Exposed {001} Facets-a Highly Efficient Material for Gas Sensing and Li-Ion Battery Applications. Scientific reports 2014, 4.
66. Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M., Use of Xps in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Pyrite in a Carbonate Medium. Appl. Surf. Sci. 2000, 165, 288-302.
67. Hua, Q.; Huang, W., Chemical Etching Induced Shape Change of Magnetite Microcrystals. J. Mater. Chem. 2008, 18, 4286-4290.
68. Tahir, D.; Tougaard, S., Electronic and Optical Properties of Cu, Cuo and Cu2o Studied by Electron Spectroscopy. J. Phys.: Condens. Matter 2012, 24, 175002.
69. Su, D.; Ford, M.; Wang, G., Mesoporous Nio Crystals with Dominantly Exposed {110} Reactive Facets for Ultrafast Lithium Storage. Scientific reports 2012, 2.
70. Zhao, W.; Gebhardt, J.; Gotterbarm, K.; Höfert, O.; Gleichweit, C.; Papp, C.; Görling, A.; Steinrück, H., Gold Intercalation of Boron-Doped Graphene on Ni (111): Xps and Dft Study. J. Phys.: Condens. Matter 2013, 25, 445002.
71. Chia-Ching, W.; Cheng-Fu, Y., Investigation of the Properties of Nanostructured Li-Doped Nio Films Using the Modified Spray Pyrolysis Method. Nanoscale research letters 2013, 8, 1-5.
72. Chong, L.; Zou, J.; Zeng, X.; Ding, W., Mechanisms of Reversible Hydrogen Storage in Nabh 4 through Ndf 3 Addition. Journal of Materials Chemistry A 2013, 1, 3983-3991.
73. Dhamale, G.; Mathe, V.; Bhoraskar, S.; Sahasrabudhe, S.; Ghorui, S., Synthesis and Characterization of Nd2o3 Nanoparticles in a Radiofrequency Thermal Plasma Reactor. Nanotechnology 2016, 27, 085603.
74. Han, R.; Li, W.; Pan, W.; Zhu, M.; Zhou, D.; Li, F.-s., 1d Magnetic Materials of Fe3o4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method. Scientific reports 2014, 4.
75. Wang, C.; Wu, Q.; Ge, H.; Shang, T.; Jiang, J., Magnetic Stability of Sno2 Nanosheets. Nanotechnology 2012, 23, 075704.
76. Kim, H. W.; Shim, S. H.; Myung, J. H., Synthesis and Characteristics of Sno2 Nanorods on Pd-Coated Substrates. Brazilian journal of physics 2005, 35, 1006-1009.
77. Zhang, Z.; Zhou, Y.; Zhang, Y.; Zhou, S.; Xiang, S.; Sheng, X.; Jiang, P., A Highly Reactive and Magnetic Recyclable Catalytic System Based on Aupt Nanoalloys Supported on Ellipsoidal Fe@ Sio 2. Journal of Materials Chemistry A 2015, 3, 4642-4651.
78. Chiou, J.-R.; Lai, B.-H.; Hsu, K.-C.; Chen, D.-H., One-Pot Green Synthesis of Silver/Iron Oxide Composite Nanoparticles for 4-Nitrophenol Reduction. J. Hazard. Mater. 2013, 248, 394-400.
79. Liu, C.-H.; Liu, J.; Zhou, Y.-Y.; Cai, X.-L.; Lu, Y.; Gao, X.; Wang, S.-D., Small and Uniform Pd Monometallic/Bimetallic Nanoparticles Decorated on Multi-Walled Carbon Nanotubes for Efficient Reduction of 4-Nitrophenol. Carbon 2015, 94, 295-300.
80. Zhang, Y.; Zhu, P.; Chen, L.; Li, G.; Zhou, F.; Lu, D. D.; Sun, R.; Zhou, F.; Wong, C.-p., Hierarchical Architectures of Monodisperse Porous Cu Microspheres: Synthesis, Growth Mechanism, High-Efficiency and Recyclable Catalytic Performance. Journal of Materials Chemistry A 2014, 2, 11966-11973.
81. Shen, H.; Duan, C.; Guo, J.; Zhao, N.; Xu, J., Facile in Situ Synthesis of Silver Nanoparticles on Boron Nitride Nanosheets with Enhanced Catalytic Performance. Journal of Materials Chemistry A 2015, 3, 16663-16669.
82. Apolinário, Â. C.; Silva, A. M.; Machado, B. F.; Gomes, H. T.; Araújo, P. P.; Figueiredo, J. L.; Faria, J. L., Wet Air Oxidation of Nitro-Aromatic Compounds: Reactivity on Single-and Multi-Component Systems and Surface Chemistry Studies with a Carbon Xerogel. Applied Catalysis B: Environmental 2008, 84, 75-86.
83. Xiong, P.; Fu, Y.; Wang, L.; Wang, X., Multi-Walled Carbon Nanotubes Supported Nickel Ferrite: A Magnetically Recyclable Photocatalyst with High Photocatalytic Activity on Degradation of Phenols. Chem. Eng. J. 2012, 195, 149-157.
84. Chu, Y.; Qian, Y.; Wang, W.; Deng, X., A Dual-Cathode Electro-Fenton Oxidation Coupled with Anodic Oxidation System Used for 4-Nitrophenol Degradation. J. Hazard. Mater. 2012, 199, 179-185.
85. Wu, C.; An, X.; Gao, S.; Su, L., Self-Assembly of Cuprous Oxide Nanoparticles Supported on Reduced Graphene Oxide and Their Enhanced Performance for Catalytic Reduction of Nitrophenols. RSC Advances 2015, 5, 71259-71267.
86. Li, X.-Z.; Wu, K.-L.; Ye, Y.; Wei, X.-W., Gas-Assisted Growth of Boron-Doped Nickel Nanotube Arrays: Rapid Synthesis, Growth Mechanisms, Tunable Magnetic Properties, and Super-Efficient Reduction of 4-Nitrophenol. Nanoscale 2013, 5, 3648-3653.
87. Corbett, J. F., An Historical Review of the Use of Dye Precursors in the Formulation of Commercial Oxidation Hair Dyes. Dyes and Pigments 1999, 41, 127-136.
88. Rode, C.; Vaidya, M.; Chaudhari, R., Synthesis of P-Aminophenol by Catalytic Hydrogenation of Nitrobenzene. Organic process research & development 1999, 3, 465-470.
89. Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T., Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2009, 26, 2885-2893.
90. Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M., Thermosensitive Core-Shell Particles as Carrier Systems for Metallic Nanoparticles. The Journal of Physical Chemistry B 2006, 110, 3930-3937.
91. Rode, C.; Vaidya, M.; Jaganathan, R.; Chaudhari, R., Hydrogenation of Nitrobenzene to P-Aminophenol in a Four-Phase Reactor: Reaction Kinetics and Mass Transfer Effects. Chem. Eng. Sci. 2001, 56, 1299-1304.
92. Vaidya, M. J.; Kulkarni, S. M.; Chaudhari, R. V., Synthesis of P-Aminophenol by Catalytic Hydrogenation of P-Nitrophenol. Organic Process Research & Development 2003, 7, 202-208.
93. Jeong, S.-W.; An, Y.-J., Construction of a Chemical Ranking System of Soil Pollution Substances for Screening of Priority Soil Contaminants in Korea. Environ. Monit. Assess. 2012, 184, 2193-2204.
94. Gemini, V.; Gallego, A.; De Oliveira, V.; Gomez, C.; Manfio, G.; Korol, S., Biodegradation and Detoxification of P-Nitrophenol by Rhodococcus Wratislaviensis. International biodeterioration & biodegradation 2005, 55, 103-108.
95. Richardson, M.; Gangolli, S., S7 Sarin. The dictionary of substances and their effects 1994, 7, 10-11.
96. 戴基福, 我國現有重要職業安全衛生制度運作及檢討. 工業安全衛生 2005, 10-20.
97. Keith, L.; Telliard, W., Es&T Special Report: Priority Pollutants: Ia Perspective View. Environmental Science & Technology 1979, 13, 416-423.
98. Kacew, S.; Lee, B.-M., Lu's Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment; CRC press, 2012.
99. Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R., High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes. Langmuir 2005, 21, 12229-12234.
100. Telkar, M.; Rode, C.; Chaudhari, R.; Joshi, S.; Nalawade, A., Shape-Controlled Preparation and Catalytic Activity of Metal Nanoparticles for Hydrogenation of 2-Butyne-1, 4-Diol and Styrene Oxide. Applied Catalysis A: General 2004, 273, 11-19.
101. Liu, Y.-C.; Chen, Y.-W., Hydrogenation of P-Chloronitrobenzene on Lanthanum-Promoted Nib Nanometal Catalysts. Industrial & engineering chemistry research 2006, 45, 2973-2980.
102. Hutchings, G. J., Catalysis by Gold. Catal. Today 2005, 100, 55-61.
103. Jana, D.; Dandapat, A.; De, G., Anisotropic Gold Nanoparticle Doped Mesoporous Boehmite Films and Their Use as Reusable Catalysts in Electron Transfer Reactions. Langmuir 2010, 26, 12177-12184.
104. Kong, X.-k.; Sun, Z.-y.; Chen, M.; Chen, Q.-w., Metal-Free Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol by N-Doped Graphene. Energy & Environmental Science 2013, 6, 3260-3266.
105. Kong, X.-K.; Chen, C.-L.; Chen, Q.-W., Doped Graphene for Metal-Free Catalysis. Chem. Soc. Rev. 2014, 43, 2841-2857.
106. Wang, A.; Yin, H.; Lu, H.; Xue, J.; Ren, M.; Jiang, T., Catalytic Activity of Nickel Nanoparticles in Hydrogenation of P-Nitrophenol to P-Aminophenol. Catal. Commun. 2009, 10, 2060-2064.
107. Patra, A. K.; Dutta, A.; Bhaumik, A., Cu Nanorods and Nanospheres and Their Excellent Catalytic Activity in Chemoselective Reduction of Nitrobenzenes. Catal. Commun. 2010, 11, 651-655.
108. Mandlimath, T. R.; Gopal, B., Catalytic Activity of First Row Transition Metal Oxides in the Conversion of P-Nitrophenol to P-Aminophenol. J. Mol. Catal. A: Chem. 2011, 350, 9-15.
109. Swathi, T.; Buvaneswari, G., Application of Nico 2 O 4 as a Catalyst in the Conversion of P-Nitrophenol to P-Aminophenol. Mater. Lett. 2008, 62, 3900-3902.
110. Shi, X.; Zheng, F.; Yan, N.; Chen, Q., Comn 2 O 4 Hierarchical Microspheres with High Catalytic Activity Towards P-Nitrophenol Reduction. Dalton Transactions 2014, 43, 13865-13873.
111. Guo, Y.; Zhang, L.; Liu, X.; Li, B.; Tang, D.; Liu, W.; Qin, W., Synthesis of Magnetic Core–Shell Carbon Dot@ Mfe 2 O 4 (M= Mn, Zn and Cu) Hybrid Materials and Their Catalytic Properties. Journal of Materials Chemistry A 2016, 4, 4044-4055.
112. Wang, S., A Comparative Study of Fenton and Fenton-Like Reaction Kinetics in Decolourisation of Wastewater. Dyes and Pigments 2008, 76, 714-720.
113. Hashemian, S., Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. Journal of Chemistry 2013, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.132.194
論文開放下載的時間是 校外不公開

Your IP address is 18.191.132.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code