Responsive image
博碩士論文 etd-0708116-172523 詳細資訊
Title page for etd-0708116-172523
論文名稱
Title
利用玻璃纖維濾紙製備Ag/PDA/CuO-SERS基材應用於原位監測亞甲基藍的光催化降解
In situ monitoring of the photocatalytic degradation of Methyleneblue on a Ag/PDA/CuO@GMF SERS substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-04
繳交日期
Date of Submission
2016-08-08
關鍵字
Keywords
光催化降解、聚多巴胺、表面增強拉曼散射、玻璃纖維濾紙
photocatalytic degradation, SERS, Glass Microfiber, Polydopamine
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
我們利用玻璃纖維濾紙(Glass Microfiber Filters,GMF)作為承載CuO的三維結構平台,接著在CuO上合成聚多巴胺(polydopamine,PDA),再利用聚多巴胺的還原特性,將銀奈米粒子還原上去,合成一個雙功能的平台Ag/PDA/CuO@GMF,同時有表面增強拉曼散射(Surface-Enhanced Raman Scattering,SERS)的效果,以及光催化降解染劑的效果。我們用4-Aminothiophenol (4-ATP)做為測試分子,計算表面增強拉曼散射的增強因子(enhancement factor)可達6.84 × 108。此材料具有可見光催化亞甲基藍的特性,我們測量此材料的能隙值約為2.7 eV,證實此材料可藉由可見光催化降解,且有良好的光催化效果,可以在五分鐘內將250 ppm的亞甲基藍降解完成,由文獻指出,將銀奈米粒子藉由聚多巴胺修飾在P型半導體氧化銅上之後,材料內部的電子轉移會增強拉曼散射,並且增加光催化效率,證明了聚多巴胺不只扮演還原劑的角色,同時也幫助銀奈米粒子和CuO電子的傳遞,藉此形成更強的電磁場增強效應以及光催化效率;藉由拉曼光譜探討亞甲基藍光催化降解的反應機制,並進一步分析降解過程產生的中間產物,以及斷鍵機制。以Ag/PDA/CuO@GMF作為半導體-金屬奈米複合材料同時具備了高的表面拉曼散射增強效果和可見光催化降解有機染劑效果,成功實現了以即時方式監測表面反應變化,期望能在生化感測及催化劑的製備作更廣泛的應用。
Abstract
Glass microfibers decorated with silver/polydopamine/copper-oxide films(Ag/PDA/CuO@GMF) were fabricated by a simple preparation method and their effectiveness as surface-enhanced Raman scattering (SERS) substrates evaluated using the probe molecule Methylene Blue. Electron transfer from silver nanoparticles to CuO through the PDA film is proposed as a possible mechanism to account for the strong enhancement of SERS intensity. An enhancement value of 6.84 × 108 was observed, which is suitable for single molecule detection. Furthermore Ag/PDA/CuO@GMF was found to degrade methylene blue in the presence of sunlight and the band gap was 2.7 eV. This confirms that Ag/PDA/CuO@GMF can be excited by visible light. We used Raman spectroscopy to analyze the photocatalytic degradation reaction and further analyze the reaction intermediates and bond breaking mechanism. Our results demonstrate that Ag/PDA/CuO@GMF exhibits a strong SERS enhancement during photocatalytic degradation of Methylene Blue and is a promising candidate as a more general SERS substrate.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
第壹章 緒論 1
1-1 聚多巴胺 1
1-3 光催化材料 5
1-4 研究動機 7
第貳章 儀器原理 8
2-1 拉曼光譜儀 8
2-1-1 拉曼散射 8
2-1-2 拉曼散射理論 11
2-2 X-ray粉末繞射儀 14
2-3 X光光電子光譜 15
2-4 掃描式電子顯微鏡 17
2-5紫外/可見光光譜 ( Ultraviolet-Visible Spectrometry, UV-Vis ) 18
2-5-1 比爾定律 ( Beer’s Law ) 19
第參章 以Ag/PDA/CuO@GMF作表面增強拉曼散射基材之研究 21
3-1 前言 21
3-2 文獻回顧 22
3-2-1 表面增強拉曼散射-化學增強效應 22
3-2-2表面增強拉曼散射-電磁場增強效應 24
3-2-3 熱點 27
3-2-4 三維表面增強拉曼散射材料 28
3-3 實驗部分 30
3-3-1 實驗材料:玻璃纖維濾紙 30
3-3-2實驗藥品 30
3-3-3實驗步驟 32
3-4實驗結果 33
3-4-1 Ag/PDA/CuO的特徵分析 33
3-4-2 Ag/PDA/CuO合成機制探討 36
3-4-3 表面增強拉曼散射效果、最低偵測極限 43
3-4-5 表面增強拉曼散射討論 44
3-4-6 結論 47
第肆章 利用 Ag/PDA/CuO@GMF監測Methylene blue降解過程 48
4-1 前言 48
4-2 文獻回顧 49
4-3 材料合成方法 52
4-3-1 實驗材料:玻璃纖維濾紙 52
4-3-2實驗藥品 52
4-3-3 材料特徵分析 53
4-4 實驗方法 56
4-5 實驗結果 59
4-5-1 材料特徵分析 59
4-5-2 光催化機制探討 62
4-5-3 斷鍵位置 67
4-5-4分析降解過程中的中間產物 70
4-5-5 降解機制探討 78
4-6 實驗方法 79
第伍章 結論 80
第陸章 參考文獻 81

圖目錄
圖1-1. 蚌類足絲與基材連結的光學影像圖1 2
圖1-2. 聚多巴胺聚合或聚集的方式 (a)共價鍵 (b)氫鍵及π-π堆疊 (c)共價鍵形成四聚體後,再經由π-π堆疊形成聚集的結構 3
圖1-3. 類比真黑色素模型提出的聚多巴胺模型 4
圖1-4. 光催化材料示意圖 6
圖2 1. 瑞利散射與拉曼散射能階示意圖 9
圖2-2. 平面極化電磁輻射13 11
圖2 3. 電場下分子的影響 11
圖2 4. 水分子的振動模式 12
圖2 5. 布拉格定律示意圖 14
圖2 6 X光光電子能譜儀機制示意圖 16
圖2 7. 掃描式電子顯微鏡概圖 17
圖2 8. 分子的電子能階 18
本實驗所使用的儀器和參數設定如下 20
圖3-1. 典型金屬-分子能階圖 23
圖3-2. 電荷轉移效應示意圖 23
圖3-3. 表面電漿共振示意圖 24
圖3-4. 表面電漿子產生一個同調性的運動 25
圖3-5. 電磁場增加效應 25
圖3-6. 電磁場增強概念 26
圖3-7. FDTD 模擬633nm光源激發金奈米結構近場強度分佈:(a)單一金奈米球體;(b)相鄰金奈米球體,其激發光偏振平行於雙球體系統之間軸方向 28
圖3-8. FDTD 模擬不同距離的氧化鋅奈米棒,其熱點的強度 28
圖3-9. 拉曼光譜的訊號積分強度對映圖(Raman Mapping Image)42 29
圖3-10. 玻璃纖維濾紙的光學影像圖 30
圖3-11. 沉積上氧化銅的波纖維濾紙製備流程 32
圖3-12. 利用多巴胺把銀奈米粒子合成在纖維上 32
圖3-13. XRD與XPS圖譜 34
圖3-14. (a) GMF掃描式電子顯微鏡圖譜, (b) CuO@GMF掃描式電子顯微鏡圖譜(c) Ag/PDA/CuO@GMF (×3000), 掃描式電子顯微鏡圖譜 and (d) Ag/PDA/CuO@GMF under high magnification (×8000). 掃描式電子顯微鏡圖譜 35
圖3-15. SEM圖譜(a) 玻璃纖維濾紙 (b) 氧化銅包覆玻璃纖維 36
圖3-16. SEM圖譜(a) Ag/PDA@GMF (b) Ag/PDA/CuO@GMF 37
圖3-17. 多巴胺吸附在氧化銅上的示意圖 38
圖3-18. 巴胺的氧化過程 39
圖3-19. 聚多巴胺還原銀的示意圖 39
圖3-20. 銅2p的高解析度XPS圖譜 41
圖3-21 (a)聚多巴胺傳遞電子的示意圖 (b)氧化銅與銀的功函數 41
圖3-22. 碳1S的高解析度XPS圖譜 42
圖3-23. 4-ATP當作測試分子,探討材料的表面拉曼散射和偵測極限 43
圖3-24. 電子由銀傳遞到氧化銅,產生強的電磁場 46
圖3-25. 硫苯酚和金團簇接觸時產生內建場 46
圖4-1. Au-TiO2 光觸媒材料之光催化機制示意圖 51
圖4-2. Ag/CuO複合奈米複合材料增加光催化效率的機制示意圖 51
圖4-3. 玻璃纖維濾紙的光學影像圖 52
圖4-4. XRD與XPS圖譜 54
圖4-5. (a) GMF掃描式電子顯微鏡圖譜, (b) CuO@GMF掃描式電子顯微鏡圖譜(c) Ag/PDA/CuO@GMF (×3000), 掃描式電子顯微鏡圖譜 and (d) Ag/PDA/CuO@GMF under high magnification (×8000). 掃描式電子顯微鏡圖譜 55
圖4-6. 亞甲基藍實驗示意圖 56
圖4-7. (a)Methylene blue 拉曼圖譜 (b)將左圖放大來分析 57
圖4-8. (a)亞甲基藍隨時間降解 (b)避光情況下,亞甲基藍的拉曼圖譜 58
圖4-9. Ag/PDA/CuO@GMF的UV-Vis圖譜 59
圖4-10. Tauc model所估算的能隙值 61
圖4-11. 氧化銅和銀奈米粒子接觸,達成費米能階平衡 63
圖4-12. 電子在Ag/PDA/CuO@GMF傳遞的示意圖 64
圖4-13. 873 cm-1的訊號為O–O stretching mode振動 66
圖4-14. 455 cm-1 訊號代表支鏈C-N-C skeletal deformation 67
圖4-15. Thionin和Methylene blue 表面增強拉曼共振的比較圖 67
圖4-16. 455 cm-1 訊號代表亞甲基藍斷鍵後會生成3-(3-(dimethylamino)phenylsulfinyl)- N1,N1-dimethylbenzene-1,4-diamine 68
圖4-17. 粉末亞甲基藍拉曼圖譜76 69
圖4-18. 亞甲基藍斷鍵示意圖 69
圖4-19. N,N-dimethylaniline的拉曼圖譜 70
圖4-20. 2-amino-5-(dimethylamino)benzenesulfonic acid的拉曼圖譜 71
圖4-21. N1,N1-dimethylbenzene-1,4-diamine的拉曼圖譜 71
圖4-22. 3-(dimethylamino)benzenesulfonic acid的拉曼圖譜 72
圖4-23. Bhattacharjee78等人藉由液相層析質譜儀分析雅甲基藍的光催化降 73
圖4-24. 1375 cm-1有C=O skeletal deformation的訊號 74
圖4-25. 苯的光催化降解過程79 74
圖4-26. N1,N1-dimethylbenzene-1,4-diamine以及N,N-dimethylaniline的光催化降解機制 75
圖4-27. 2-amino-5-(dimethylamino)benzenesulfonic acid和3-(dimethylamino)benzenesulfonic acid的光催化降解機制 76
圖4-28. 1047 cm-1代表NO3-1殘基 76
圖4-29. 1448 cm-1代表溶液中含有SO42-殘基 77
圖4-30. 我們推測的亞甲基藍降解機制圖 78


表目錄
表3-1. 實驗藥品列表 31
表3-2. CuO/PDA(24hr)/Ag@GMF 偵測 10-4 ~ 10-6 4-ATP的增強因子 44
表4-1. 實驗藥品列表 53
表4-2. Methylene blue 特徵分析 57
參考文獻 References
第陸章 參考文獻
1. Liu, Y.; Ai, K.; Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057-5115.
2. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426-430.
3. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y., Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27, 14180-14187.
4. Kang, K.; Choi, I. S.; Nam, Y., A Biofunctionalization Scheme for Neural Interfaces Using Polydopamine Polymer. Biomaterials 2011, 32, 6374-6380.
5. Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. d. A.; Toniazzo, V.; Ruch, D., Dopamine− Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir 2011, 27, 2819-2825.
6. Son, H. Y.; Ryu, J. H.; Lee, H.; Nam, Y. S., Silver‐Polydopamine Hybrid Coatings of Electrospun Poly (Vinyl Alcohol) Nanofibers. Macromol. Mater. Eng. 2013, 298, 547-554.
7. Zhang, L.-S.; Wong, K.-H.; Zhang, D.-Q.; Hu, C.; Yu, J. C.; Chan, C.-Y.; Wong, P.-K., Zn: In (Oh) Y S Z Solid Solution Nanoplates: Synthesis, Characterization, and Photocatalytic Mechanism. Environmental science & technology 2009, 43, 7883-7888.
8. Chen, F.; Zhao, J.; Hidaka, H., Highly Selective Deethylation of Rhodamine B: Adsorption and Photooxidation Pathways of the Dye on the Tio2/Sio2 Composite Photocatalyst. International Journal of Photoenergy 2003, 5, 209-217.
9. Smekal, A., Zur Quantentheorie Der Dispersion. Naturwissenschaften 1923, 11, 873-875.
10. Colthup, N., Introduction to Infrared and Raman Spectroscopy; Elsevier, 2012.
11. Aroca, R., Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, 2006.
12. Ferraro, J. R., Introductory Raman Spectroscopy; Academic press, 2003.
13. Hecht, E., Optics, 4th. International edition, Addison-Wesley, San Francisco 2002, 3.
14. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題 1994.
15. Andrade, J. D., X-Ray Photoelectron Spectroscopy (Xps). In Surface and Interfacial Aspects of Biomedical Polymers, Springer: 1985; pp 105-195.
16. Chusuei, C. C.; Goodman, D. W., X-Ray Photoelectron Spectroscopy. Encyclopedia of physical science and technology 2002, 17, 921-938.
17. Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig Jr, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists; Springer Science & Business Media, 2012.
18. Beer, A., Determination of the Absorption of Red Light in Colored Liquids. Ann. der Phys. u. Chem 1852, 86, 78-88.
19. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews 1999, 99, 2957-2976.
20. Liu, S.; Zhao, X.; Li, Y.; Chen, M.; Sun, M., Dft Study of Adsorption Site Effect on Surface-Enhanced Raman Scattering of Neutral and Charged Pyridine-Ag4 Complexes. Spectrochim Acta A Mol Biomol Spectrosc 2009, 73, 382-387.
21. Lombardi, J. R.; Birke, R. L., Time-Dependent Picture of the Charge-Transfer Contributions to Surface Enhanced Raman Spectroscopy. The Journal of Chemical Physics 2007, 126, 244709.
22. Lombardi, J. R.; Birke, R. L., A Unified View of Surface-Enhanced Raman Scattering. Accounts of Chemical Research 2009, 42, 734-742.
23. Mao, Z., et al., Metal–Semiconductor Contacts Induce the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2011, 115, 18378-18383.
24. Moskovits, M., Surface-Enhanced Spectroscopy. Reviews of Modern Physics 1985, 57, 783-826.
25. Otto, A., The ‘Chemical’ (Electronic) Contribution to Surface-Enhanced Raman Scattering. Journal of Raman Spectroscopy 2005, 36, 497-509.
26. Sun, M.; Liu, S.; Li, Z.; Duan, J.; Chen, M.; Xu, H., Direct Visual Evidence for the Chemical Mechanism of Surface-Enhanced Resonance Raman Scattering Via Charge Transfer: (Ii) Binding-Site and Quantum-Size Effects. Journal of Raman Spectroscopy 2009, 40, 1172-1177.
27. Valley, N.; Greeneltch, N.; Van Duyne, R. P.; Schatz, G. C., A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (Sers): Theory and Experiment. J. Phys. Chem. Lett. 2013, 4, 2599-2604.
28. Xia, L.; Chen, M.; Zhao, X.; Zhang, Z.; Xia, J.; Xu, H.; Sun, M., Visualized Method of Chemical Enhancement Mechanism on Sers and Ters. J. Raman Spectrosc. 2014, 45, 533-540.
29. Xie, Y.; Yang, S.; Mao, Z.; Li, P.; Zhao, C.; Cohick, Z.; Huang, P.-H.; Huang, T. J., In Situ Fabrication of 3d Ag@ Zno Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems. ACS nano 2014, 8, 12175-12184.
30. Deng, X.; Smeets, N. M.; Sicard, C.; Wang, J.; Brennan, J. D.; Filipe, C. D.; Hoare, T., Poly (Oligoethylene Glycol Methacrylate) Dip-Coating: Turning Cellulose Paper into a Protein-Repellent Platform for Biosensors. Journal of the American Chemical Society 2014, 136, 12852-12855.
31. Wang, Y.; Song, W.; Ruan, W.; Yang, J.; Zhao, B.; Lombardi, J. R., Sers Spectroscopy Used to Study an Adsorbate on a Nanoscale Thin Film of Cuo Coated with Ag. J. Phys. Chem. C 2009, 113, 8065-8069.
32. Fleischmann, M.; Hendra, P. J.; McQuillan, A., Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163-166.
33. Le Ru, E.; Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier, 2008.
34. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem 1977, 84, 1-20.
35. Campion, A.; Kambhampati, P., Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241-250.
36. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-Enhanced Raman Scattering and Biophysics. J. Phys.: Condens. Matter 2002, 14, R597.
37. Brolo, A. G.; Irish, D. E.; Smith, B. D., Applications of Surface Enhanced Raman Scattering to the Study of Metal-Adsorbate Interactions. J. Mol. Struct. 1997, 405, 29-44.
38. Doering, W. E.; Nie, S., Single-Molecule and Single-Nanoparticle Sers: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B 2002, 106, 311-317.
39. Stockman, M. I., Nanoplasmonics: The Physics Behind the Applications. Phys. Today 2011, 64, 39-44.
40. Lee, P.; Meisel, D., Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. The Journal of Physical Chemistry 1982, 86, 3391-3395.
41. 吳民耀、劉威志, 表面電漿子理論與模擬. 物理雙月刊 2006 年 4 月, 廿八卷二期, 486-496.
42. Wu, M.-C.; Chou, Y.; Chuang, C.-M.; Hsu, C.-P.; Lin, J.-F.; Chen, Y.-F.; Su, W.-F., High-Sensitivity Raman Scattering Substrate Based on Au/La0. 7sr0. 3mno3 Periodic Arrays. ACS applied materials & interfaces 2009, 1, 2484-2490.
43. Tadjarodi, A.; Roshani, R., A Green Synthesis of Copper Oxide Nanoparticles by Mechanochemical Method. Current Chemistry Letters 2014, 3, 215-220.
44. Park, H.-H.; Zhang, X.; Choi, Y.-J.; Park, H.-H.; Hill, R. H., Synthesis of Ag Nanostructures by Photochemical Reduction Using Citrate-Capped Pt Seeds. J Nanomater. 2011, 2011, 6.
45. Niu, H.; Wang, S.; Zeng, T.; Wang, Y.; Zhang, X.; Meng, Z.; Cai, Y., Preparation and Characterization of Layer-by-Layer Assembly of Thiols/Ag Nanoparticles/Polydopamine on Pet Bottles for the Enrichment of Organic Pollutants from Water Samples. J. Mater. Chem. 2012, 22, 15644-15653.
46. Yang, J.; Stuart, M. A. C.; Kamperman, M., Jack of All Trades: Versatile Catechol Crosslinking Mechanisms. Chem. Soc. Rev. 2014, 43, 8271-8298.
47. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Elucidating the Structure of Poly (Dopamine). Langmuir 2012, 28, 6428-6435.
48. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H., Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22, 4711-4717.
49. Liebscher, J. r.; Mrówczyński, R.; Scheidt, H. A.; Filip, C.; Hădade, N. D.; Turcu, R.; Bende, A.; Beck, S., Structure of Polydopamine: A Never-Ending Story? Langmuir 2013, 29, 10539-10548.
50. Ball, V.; Nguyen, I.; Haupt, M.; Oehr, C.; Arnoult, C.; Toniazzo, V.; Ruch, D., The Reduction of Ag+ in Metallic Silver on Pseudomelanin Films Allows for Antibacterial Activity but Does Not Imply Unpaired Electrons. J. Colloid Interface Sci. 2011, 364, 359-365.
51. Yoosaf, K.; Ipe, B. I.; Suresh, C. H.; Thomas, K. G., In Situ Synthesis of Metal Nanoparticles and Selective Naked-Eye Detection of Lead Ions from Aqueous Media. J. Phys. Chem. C 2007, 111, 12839-12847.
52. Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-Dot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in Vitro and Intracellular Ph Sensing. Nat. Mater. 2010, 9, 676-684.
53. Hsieh, C.-W.; Lin, P.-Y.; Hsieh, S., Improved Surface-Enhanced Raman Scattering of Insulin Fibril Templated Colloidal Gold Nanoparticles on Silicon. J Nanophotonics 2012, 6, 063501-1-063501-6.
54. Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794-13803.
55. Gartia, M. R.; Bond, T. C.; Liu, G. L., Metal− Molecule Schottky Junction Effects in Surface Enhanced Raman Scattering. The Journal of Physical Chemistry A 2010, 115, 318-328.
56. Choi, W.; Termin, A.; Hoffmann, M. R., The Role of Metal Ion Dopants in Quantum-Sized Tio2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry 1994, 98, 13669-13679.
57. Wang, K.; Zhang, J.; Lou, L.; Yang, S.; Chen, Y., Uv or Visible Light Induced Photodegradation of Ao7 on Tio 2 Particles: The Influence of Inorganic Anions. Journal of Photochemistry and Photobiology A: Chemistry 2004, 165, 201-207.
58. Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M. H., Ag@ Agcl: A Highly Efficient and Stable Photocatalyst Active under Visible Light. Angew. Chem. Int. Ed. 2008, 47, 7931-7933.
59. Link, S.; El-Sayed, M. A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999, 103, 8410-8426.
60. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J., Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294, 1901-1903.
61. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T., A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. J. Am. Chem. Soc. 2008, 130, 1676-1680.
62. Tian, Y.; Tatsuma, T., Mechanisms and Applications of Plasmon-Induced Charge Separation at Tio2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632-7637.
63. Gao, S.; Li, Z.; Jiang, K.; Zeng, H.; Li, L.; Fang, X.; Jia, X.; Chen, Y., Biomolecule-Assisted in Situ Route toward 3d Superhydrophilic Ag/Cuo Micro/Nanostructures with Excellent Artificial Sunlight Self-Cleaning Performance. J. Mater. Chem. 2011, 21, 7281-7288.
64. Li, R.; Zhou, A.; Lu, Q.; Yang, C.; Zhang, J., In Situ Monitoring and Analysis of the Photocatalytic Degradation Process and Mechanism on Recyclable Au Nps-Tio 2 Nts Substrate Using Surface-Enhanced Raman Scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 436, 270-278.
65. Matulaitienė, I.; Kuodis, Z.; Eicher-Lorka, O.; Niaura, G., Sers Characterization of Imidazole Ring Terminated Self-Assembled Monolayer Formed from Lipoic Acid Histamide on Silver Electrode. J. Electroanal. Chem. 2013, 700, 77-85.
66. Wang, J. F.; Wu, X. Z.; Xiao, R.; Dong, P. T.; Wang, C. G., Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application. PloS one 2014, 9, e97976.
67. Arenas, J.; Montanez, M.; Otero, J.; Marcos, J., Surface Enhanced Raman Spectra of 2-Cyanopyridine and Picolinamide. J. Mol. Struct. 1993, 293, 341-344.
68. Tsiminis, G.; Chu, F.; Warren-Smith, S. C.; Spooner, N. A.; Monro, T. M., Identification and Quantification of Explosives in Nanolitre Solution Volumes by Raman Spectroscopy in Suspended Core Optical Fibers. Sensors 2013, 13, 13163-13177.
69. Sulk, R. A.; Corcoran, R. C.; Carron, K. T., Surface-Enhanced Raman Scattering Detection of Amphetamine and Methamphetamine by Modification with 2-Mercaptonicotinic Acid. Appl. Spectrosc. 1999, 53, 954-959.
70. Raj, A.; Raju, K.; Varghese, H. T.; Granadeiro, C. M.; Nogueira, H. I.; Panicker, C. Y., Ir, Raman and Sers Spectra of 2-(Methoxycarbonylmethylsulfanyl)-3, 5-Dinitrobenzene Carboxylic Acid. Journal of the Brazilian Chemical Society 2009, 20, 549-559.
71. Baia, M.; Astilean, S.; Iliescu, T., Raman and Sers Investigations of Pharmaceuticals; Springer Science & Business Media, 2008.
72. Carrasco-Flores, E.; Clavijo, R.; Campos-Vallette, M.; Aroca, R., Vibrational Spectra and Surface-Enhanced Vibrational Spectra of 1-Nitropyrene. Appl. Spectrosc. 2004, 58, 555-561.
73. Cárcamo, J.; Aliaga, A.; Clavijo, E.; Garrido, C.; Gómez‐Jeria, J.; Campos‐Vallette, M., Proline and Hydroxyproline Deposited on Silver Nanoparticles. A Raman, Sers and Theoretical Study. J. Raman Spectrosc. 2012, 43, 750-755.
74. Adhikary, J.; Das, B.; Chatterjee, S.; Dash, S. K.; Chattopadhyay, S.; Roy, S.; Chen, J.-W.; Chattopadhyay, T., Ag/Cuo Nanoparticles Prepared from a Novel Trinuclear Compound [Cu (Imdz) 4 (Ag (Cn) 2) 2](Imdz= Imidazole) by a Pyrolysis Display Excellent Antimicrobial Activity. J. Mol. Struct. 2016, 1113, 9-17.
75. Pallaoro, A.; Hoonejani, M. R.; Braun, G. B.; Meinhart, C.; Moskovits, M., Combined Surface-Enhanced Raman Spectroscopy Biotags and Microfluidic Platform for Quantitative Ratiometric Discrimination between Noncancerous and Cancerous Cells in Flow. J Nanophotonics 2013, 7, 073092-073092.
76. Rubim, J. C.; Sousa, M. H.; Silva, J. C.; Tourinho, F. A., Raman Spectroscopy as a Powerful Technique in the Characterization of Ferrofluids. Brazilian journal of physics 2001, 31, 402-408.
77. Chaudhuri, R. G.; Paria, S., Visible Light Induced Photocatalytic Activity of Sulfur Doped Hollow Tio 2 Nanoparticles, Synthesized Via a Novel Route. Dalton Transactions 2014, 43, 5526-5534.
78. Bhattacharjee, A.; Ahmaruzzaman, M., Cuo Nanostructures: Facile Synthesis and Applications for Enhanced Photodegradation of Organic Compounds and Reduction of P-Nitrophenol from Aqueous Phase. RSC Adv. 2016, 6, 41348-41363.
79. Zhuang, H.; Gu, Q.; Long, J.; Lin, H.; Lin, H.; Wang, X., Visible Light-Driven Decomposition of Gaseous Benzene on Robust Sn 2+-Doped Anatase Tio 2 Nanoparticles. RSC Adv. 2014, 4, 34315-34324.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.5.183
論文開放下載的時間是 校外不公開

Your IP address is 3.15.5.183
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code