Responsive image
博碩士論文 etd-0708117-111845 詳細資訊
Title page for etd-0708117-111845
論文名稱
Title
地形複雜度與魚群豐度於人工魚礁區之相關分析-以永安人工魚礁區為例
Correlation Analysis of Topographic Complexity and Fish Abundance around Artificial Reefs – A Case Study of Artificial Reefs at Kaohsiung, Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2017-08-08
關鍵字
Keywords
相關分析、景觀生態學、魚群豐度、地形複雜度、多音束水層資料
Topographic complexity, Landscape ecology, Correlation analysis, Multibeam water column data, Fish abundance
統計
Statistics
本論文已被瀏覽 5739 次,被下載 42
The thesis/dissertation has been browsed 5739 times, has been downloaded 42 times.
中文摘要
人工魚礁常被使用於改善漁場環境,許多研究皆指出其能夠有效改善沿海的生態環境,提供生物棲息場所。而台灣在 1960 年代起便已開始投放人工魚礁,至今已有近百處的人工魚礁區。欲發揮人工魚礁之功效,除了適當的選址是關鍵因素以外,魚礁的結構設計、平面配置或是堆疊也相當重要。在過去對珊瑚礁之研究中,一般認為地形複雜程度越高,魚群豐度及物種豐富度也會越高。本研究
所使用的地形複雜度指標分別有:(1)表面粗糙度、(2)地形起伏度、(3)體積、(4)三維碎形維度、(5)水深標準差;並由景觀生態學的角度計算景觀指標如(1)景觀面積百分比、(2)綴塊密度、(3)最大綴塊指數、(4)平均綴塊面積、(5)面積加權平均綴塊碎形維度。
本研究利用 Reson SeaBat 7125 多音束測深系統於高雄市永安區外海四個魚礁區蒐集水深及水層資料,並使用 Echoview 水層資料處理軟體萃取魚訊。在上述四個魚礁區中,礁體堆疊、排列方式都不盡相同,故本研究試圖找出人工魚礁之配置、地形複雜度與魚群豐度之相關性。資料蒐集時期由 2014 至 2016 年,分別於清晨、中午及黃昏與午夜時段觀測多音束水層資料,發現大多數午夜時段及少數黃昏時段的水層資料非魚跡訊號頗多,故本研究僅針對清晨、中午及黃昏時段共十四個航次的資料,透過 Echoview 的水層資料處理標準化作業流程推估得各測段之魚訊數量及位置後,發現茄萣(三)魚礁區偵測到相對其他三個魚礁區為
多的魚訊數量。
由 Reson SeaBat 7125 所取得之水深資料輸出為網格,並將各魚礁區分別切割為 10m 及 30m 網格,並計算網格之地形複雜度指標與景觀指標。經整合各網格之魚訊量及上述指標後,利用 SPSS 統計分析軟體探討水層魚訊與各種地形複雜度指標的相關性,獲得下述結論:(1) 在二維平面的配置下,景觀面積百分比及最大綴塊指數與魚訊量呈現顯著且高度的正相關,意即當一魚礁區的礁體總面
積越大,或是該區最大礁體群落所佔整區比例越大時皆會偵測到越多的魚訊量。(2) 各地形複雜度指標皆與魚訊量有顯著的正相關,其中以地形起伏度及體積與魚訊量之相關性最高,也有較佳的預測能力,即魚礁若有堆疊至二至三層,且堆放體積越大的情況下,此區會有越多的魚訊量。(3) 觀察魚隻與地形的分布圖發現魚隻除了常出現在魚礁正上方以外,各魚礁區最大的魚群多在魚礁邊緣處被偵測到,此情況符合邊緣效應之理論。在網格大小為 30m 時,魚訊量與地形複雜度指標之相關性較高,原因可能是魚隻會徘徊在距離礁體一定範圍內,若將網格尺度定為 10m 可能不足以展現魚隻徘徊之特性。(4)以時段區分後可發現清晨時段所偵測到之魚訊量明顯多於中午與黃昏時段,且清晨時段偵測到的魚跡訊號大多不在礁體周圍,故推測清晨時段為魚群離開礁體活動之時段。
Abstract
Artificial Reefs (ARs) had been deployed more than one hundred sites around Taiwan coast since 1960. One of important designing factors for ARs are suitable site selection and configuration in horizontal and vertical aspects. Topographic complexity is correlated with fish and species abundance according to reports from a lot of papers. The indices used for topographic complexity in this study have (1) surface rugosity, (2) relief, (3) volume, (4) 3D fractal dimension, (5) standard deviation of depths. Some indices from landscape ecology such as: (1) patch density, (2) percentage of landscape, (3) largest patch index, (4) mean patch area, (5) area-weighted average patch fractal dimension calculated by Fragstats software were also explored.
In this study, Reson SeaBat 7125 MultiBeam Echo Sounder (MBES) was used to collect water column data around four AR sites at Yungan coast, Kaohsiung, Taiwan, and to analyze the fish abundance by Echoview software. Above mentioned four AR sites have different forms of piling and arrangements, so this study tries to find the correlation between topographic complexity and fish abundance. Water column data were collected four time periods in a day, such as: dawn, noon, dusk, midnight, in each trip last for one or two continuous days. It was found most of midnight water column data were very noisy, and some of the dusk data had similar problem. After removing
those noisy data, 14 water column data sets of 2014-2016 were analyzed by Echoview to estimate amount of fishes and their position. It was found site #3 had detected more fishes than rest of the three sites.
The water depths surveyed by Reson 7125 Multibeam Echo sounding system for AR sites were gridded into sizes of 10m and 30m. Then we calculated the topographic complexity indices and landscape indices. After integrating amount of fishes and landscape indices and topographic complexity indices information, correlation analysis was performed to analyze which indices are good for topographic complexity and having higher correlation coefficients.
There are four conclusions we can make: (1) among landscape indices, percentage of landscape and largest patch indices have significant higher positive correlation with fish abundance. That means the higher the percentage of area or largest patch of an AR site have, the richer fish abundance may be detected, (2) all of the topographic complexity indices have significant positive correlation with fish abundance, but relief, standard deviation of depths and volume have higher correlation coefficients. That means if the ARs were piled up to 2-3 layers or had larger surface area, we may have higher amount of fishes, (3) it was found the detected fishes not only located right above the ARs, they also appeared around the edge of ARs. This phenomenon conforms to the theory of edge effect. The correlation coefficient for grid size of 30m is higher than
that of 10m, this may be because 10m is too small to demonstrate the characteristics of fish wandering, (4) it is also found amount of fishes detected in the dawn is higher than in the noon and dusk, and most of them were found at outside of the ARs, We may infer fishes likes to leave AR site in the dawn.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章、緒論 1
1-1、研究動機與目的 1
1-2、研究方法與流程 3
第二章、文獻回顧 5
2-1、地形複雜度之相關文獻回顧 5
2-2、景觀生態學 14
第三章、實驗與資料處理方法 18
3-1、研究區背景及資料蒐集 18
3-1-1、背景資料 18
3-1-2、水層與地形資料蒐集作業說明 22
3-2、水層資料處理流程 26
3-3、地形複雜度指標之處理 30
3-4、景觀指標 34
第四章、結果與討論 40
4-1、各區魚訊之空間與時間分佈探討 40
4-1-1、各區空間特性與魚訊偵測結果 40
4-1-2、各區魚訊之時段分布 47
4-2、地形複雜度指標與魚訊量之相關分析 54
4-2-1、表面粗糙度 54
4-2-2、地形起伏度 57
4-2-3、體積 59
4-2-4、三維碎形維度 61
4-2-5、水深標準差 64
4-2-6、小結 66
4-3、景觀指標 70
4-3-1、各魚礁區之景觀指標 70
4-3-2、景觀指標與魚訊量之相關分析 71
4-4、地形複雜度指標之特性 76
第五章、結論與建議 80
5-1、結論 80
5-2、建議 84
參考文獻 86
附錄一、各區 10m 網格之地形複雜度與魚訊量之散佈圖 95
附錄二、各區 30m 網格之地形複雜度與魚訊量之散佈圖 100
附錄三、2014 年各區景觀指標與魚訊量之散佈圖 105
附錄四、2015-2016 年各區景觀指標與魚訊量之散佈圖 108
參考文獻 References
1. 王如松、馬世駿(1985),「邊緣效應及其在經濟生態學中的應用」。生態學雜誌,第 16 卷第 2 期,第 38-42 頁。
2. 王志恒、陳安平、方精云(2004),「湖南省種子植物物種豐富度與地形的關係」。地理學報,第 59 卷第 6 期,第 889-894 頁。
3. 江彥政(2004),「景觀生態中塊區結構指數與鳥類物種歧異度相關性之研究」。興大園藝,第 29 卷第 4 期,第 97-109 頁。
4. 江彥政(2004),「以景觀生態及景觀生心理探討永續環境之研究」。國立中興大學園藝學系碩士論文。
5. 李麗麗、趙成章、殷翠琴、王大為、張軍霞(2011),「黑河上游天然草地蝗蟲物種豐富度與地形關係的 GAM 分析」。昆蟲學報,第 54 卷第 11期,第 1312-1318 頁。
6. 呂秀英(2000),「有關係?沒關係?談迴歸與相關」。農業試驗所技術服務季刊,第 11 卷第 1 期,第 5-8 頁。
7. 周侗(2007),「DEM 元分維模型的構建方法與應用研究」。南京師範大學地理科學學院碩士論文。
8. 許澤宇(2008),「複雜化觀點下之最佳化空建設計:人工棲地設計與應用」。南華大學企業管理系管理科學博士論文。
9. 許秋玲(2002),「數值高度模型之地形複雜度量度指標研究」。國立台灣大學地理環境資源研究所碩士論文。
10. 陳怡靜(2004)「影響捷運運量因素之探討-以高雄捷運為例」。國立中山大學經濟學研究所碩士論文。
11. 陈勇、于长清、张国胜、张硕(2002),「人工鱼礁的环境功能与集鱼效果」。大连水产学院学报
,第 17 卷第 1 期,第 65-69 頁。
12. 郭孟維(2008),「應用側掃聲納影像進行海床靜態目標物自動化辨識與分析之研究」。國立中山大學海洋環境及工程學系碩士論文。
13. 張晉嘉(2015),「半自動處理多音束水層資料-以永安魚礁區為例」。國立中山大學海洋環境及工程學系碩士論文。
14. 張宇軍,房麗君(2011),「蝴蝶多樣性與地形相關性研究-以大峪流域為例」。陝西林业科技,第 3 期,第 6-9 頁。
15. 黃怡靜(2007),「台灣本島地質分區之地形碎形特性研究」。國立成功大學資源工程學系碩士論文。
16. 焦金菊、潘永玺、孙利元、杨宝清、邱盛尧(2011),「人工鱼礁区的增殖鱼类资源效果初步研究」。水产科学,第 30 卷第 2 期,第 79-82 頁。
17. 隋剛、郝兵元、彭林(2010),「利用高程標準差表達地形起伏程度的數據分析」。太原理工大學學報,第 41 卷第 4 期,第 381-384 頁。
18. 詹榮桂、劉仁銘(2012),「人工魚礁完全手冊第 1.6 版」。中央研究院生物多樣性研究中心。
19. 趙培文(1995),「台灣地形之碎形特性與地形模擬」。國立成功大學地球科學研究所碩士論文。
20. 葉寶安(1994),「台灣北部大屯火山之碎形幾何特性及其地質意義」。國立中央大學應用地質所碩士論文。
21. 鄔建國(2003),「景觀生態學:格局、過程、尺度與等級」。台北:五南圖書出版股份有限公司。
22. 鄭新奇、付梅臣(2010),「景觀格局空間分析技術及其應用」。北京:科學出版社。
23. 谢忠明(1995),「海水增养殖技术问答」。北京:中国农业出版社。
24. 宇都宮正(1957),「第 3 報魚礁に附着する生物について.」。山口県内海水試調査研究業績,第 9 期,第 41-45 頁。
25. Barton, C.C., Larsen, E. (1985). Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada. Fundamentals of Rock Joints: Proceedings of the International Symposium on Fundamentals of Rock Joints, pp.77-84.
26. Bell, J.D., Galzin, R. (1984). Infulence of live coral cover on coral-reef fish communites. Marine Ecology – Progress Series. Vol. 15, pp.265-274.
27. Blackman, S. S. (1986). Multiple-target tracking with radar applications, Artech House, Dedham, MA, US.
28. Blondel, J., P. Perret, M. Maistre, and P.C. Dias. (1992). Do harlequin mediterranean environment function as source-sink for blue tits? Landscape Ecology, Vol. 6, pp.212-219.
29. Bohnsack, J.A., Sutherland, D.L. (1985). Artificial reef research: a review with recommendation s for future priorities, Bulletin of Marine Science, Vol. 37(1), pp.11-39.
30. Boswell, K. M., Wells, R. J. D., Cowan, J. J. H., & Wilson, C. A. (2010). Biomass, density, and size distributions of fishes associated with a large-scale artificial reef complex in the Gulf of Mexico. Bulletin of Marine Science, Vol. 86(4), pp.879-889.
31. Carpenter, KE, Miclat R.I., Albaladejo, V.D., Corpuz, V.T. (1981). The influence of substrate structure on the local abundance and diversity of Philippine reef fishes. Proc 4 th Int Coral Reef Symp Manila. Vol. 2: pp.497–502.
32. Charbonnel, E., Serre, C., Ruitton, S., Harmelin, J.G., Jensen, A. (2002). Effects of increased habitat complexity on fish assemblages associated with large artificial reef units (French editerranean coast). ICES Journal of Marine science, Vol. 59, pp. S208−S213.
33. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.)
34. Duelli, P. (1997). Biodiversity evaluation in agriculture landscapes: An approach at two different scales. Agriculture, Ecosystems and Environment, Vol. 62, pp.81-91.
35. Fahrig, L. (2013). Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography, Vol. 40, pp.1649-1663.
36. Freemark, K. (1995). Assessing effects of agriculture on terrestrial wildlife: developing a hierarchical approach for the US EPA. Landscape and Urban Planning, Vol. 31, pp.99-115.
37. Forman, R.T.T., Gordon, M. (1986). Landscape Ecology. New York: John Wiley & sons
38. Forman, R.T.T., Land Mosaics. (1995).The ecology of landscapes and regions,UK : Cambridge University Press.
39. Friedlander, A. M., & Parrish, J. D. (1998). Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology, Vol. 224(1), pp.1-30.
40. Gratwicke, B., M.R. Speight (2005). Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series, Vol. 292, pp.301−310.
41. Gratwicke, B., M. R. Speight (2005). The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats, Journal of Fish Biology, Vol. 66, pp.650–667.
42. Gatts, P.V., Franco, M.A.L., Santos, L.N., Rocha, D.F., Zalmon, I.R. (2014).Influence of the artificial reef size configuration on transient ichthyofauna - Southern Brazil. Ocean & Coastal Management, Vol. 98, pp.111-119.
43. Gardner, J. S. (1983). Accretion rates on some debris slopes in the Mt. Rae area, Canadian Rocky Mountains. Earth Surface Processes and Landforms, Vol. 8, pp.347-355.
44. Genzano, Gabriel, Diego Giberto, Claudia Bremec (2011). Benthic survey of natural and artificial reefs off Mar del Plata, Argentina, southwestern Atlantic. Lat. Am. J. Aquat. Res., Vol. 39(3), pp.553-566.
45. Hixon, M.A., Beets, J.P. (1989). Shelter characteristics and Caribbean fish assemblages: experiments with artificial reefs. Bulletin of Marine Science. Vol. 44, pp.666-680.
46. Clarke, Keith C. (1986). Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers & Geosciences, Vol.12, pp.713-722
47. Jenness, JS. (2004). Calculating landscape surface area from digital elevation models. Wildlife Society Bulletin, Vol. 32(3), pp.829-839.
48. Koeck, Barbara, Tessier, A., Anik Brind’ Amour, Pastor, J., Bijaoui, B., Dalias, N., Astruch, P., Saragoni, G., Lenfant, P. (2014). Functional differences between fish communities on artificial and natural reefs: a case study along the French Catalan coast. Aquatic Biology, Vol. 20, pp. 219–234.
49. Kuffner, I.B., Brock, J.C, Grober-Dunsmore, R., Bonito, V.E., Hickey, T.D., Wright, C.W. (2007). Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA. Environmental Biology of Fishes, Vol. 78, pp.71-82.
50. Lam, N.S.-N., Qiu, H.-L., Quattrochi, D.A. (1997). An evaluation of fractal surface measurement methods using ICAMS (Image Characterization And Modeling System). Technical Papers, ACSM/ASPRS, Bethesda, Maryland. Vol. 5, Auto-Carto 13, pp.377-386.
51. Lam, N.S.-N., Ju, W. (2009). An improved algorithm for computing local fractal dimension using the triangular prism method. Computers & Geosciences, Vol. 35, pp.1224-1233.
52. Lu, Huaxing. (2008). Modelling Terrain Complexity. In: Zhou Q., Lees B., Tang G. (eds) Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg.
53. Luckhurst, B.E. and Luckhurst K. (1978). Analysis of Substrate Variables on Coral Reef Fish Communities. Marine Biology, Vol. 49, pp.317-323.
54. Mandelbrot, B.B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, Vol.155, pp.636-638.
55. McCormick, M.I. (1994). Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Marine Ecology Progress Series, Vol. 112, 87-96.
56. McGarigal, K., McComb, W. (1995). Relationships between landscape structure and breeding birds in the Oregon coast range. Ecological Monographs, Vol. 65(3), pp.235-260.
57. McGarigal, K., Marks, B.J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
58. O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B.L., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H., Graham, R.L. (1988). Indices of landscape pattern. Landscape Ecology, Vol. 1, pp.153-162.
59. Ö hman, M.C., Rajasuriya, Arjan. (1998). Relationships between habitat structure and fish communities on coral. Environmental Biology of Fishes. Vol. 1, pp.19-31.
60. Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., and Monaco, M.E. (2007). Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecological Modelling, Vol. 204, pp.9-21.
61. Purkis, S.J. and Kohler, K.E. (2008). The role of topography in promoting fractal patchiness in a carbonate shelf landscape. Coral Reefs, Vol. 27(4), pp.977-989.
62. Rilov, G., Benayahu, Y. (1998). Vertical artificial structures as an alternative habitat for coral reef fishes in disturbed environments. Marine Environmental Research, Vol. 45(4/5), pp.431-51.
63. Roberts, C.M., Ormond, R.F.G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecololgy – Progress Series. Vol.41, pp.1-8.
64. Rutledge, D. (2003). Landscape indices as measures of the effects of fragmentation: can pattern reflect process? DOC Science Internal Series 98. Department of Conservation, Wellington New Zealand. 27 p.
65. van Rooij, J. M., Kroon, F. J., Viedeler, J.J. (1996). The social and mating system of the herbivorous reef fish Sparisoma viride; one–male versus multimale groups. Environmental Biology of Fishes, Vol. 47, pp.353–378.
66. Sherman, R. L., Gillima, D.S., Spieler, R.E. (2002). Artificial reef design: void space, complexity, and attractants, ICES Journal of Marine Science, Vol. 59, pp.S196–S200.
67. Topping, Darin T., Stephen T. Szedlmayer (2011). Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fisheries Research, Vol. 112, pp.77-84.
68. Walker, B.K. (2008). A seascape approach to predicting reef fish distribution. PhD dissertation, Nova Southeastern University.
69. Walker, B.K., Jordan, L.K.B., Spieler, R.E. (2009). Relationship of reef fish assemblages and topographic complexity on southeastern Florida coral reef habitats. Journal of Coastal Research, Special Issue. 53, pp.39-48.
70. Wang, K. and Lo, C.P. (1999). An assessment of the accuracy of Triangulated Irregular Networks (TINS) and lattices in ARC/INFO. Transactions in GIS, Vol. 3, pp.161-174.
71. Wilhelmsson, D., Yahya, S.A.S., Ö hman, M.C. (2006). Effects of high-relief structures on cold temperate fish assemblages: A field experiment. Marine Biology Research, Vol. 2(2), pp.136-147.
72. Wilson, Margaret F.J., Brian O’Connell, Colin Brown, Janine C. Guinan, Anthony J. Grehan (2007). Multiscale terrain analysis of multibeam bathymetry data for Habitat mapping on the continental slope. Marine Geodesy, Vol. 30, pp.3–35.
73. Zaviezo, Tania, Grez, A.A., Estades, C.F., Perez, Astrid. (2006). Effects of habitat loss, habitat fragmentation, and isolation on the density, species richness, and distribution of labybeetles in manipulated alfalfa landscapes. Ecological Entomology, Vol.31(6), pp.646-656.
74. Zawada, David G., Brock, John C. (2009). A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry. Journal of Coastal Research, Special Issue. 53, pp. 6-15.
75. Zawada, David G., Gregory A. Piniak, Hearn, Clifford J. (2010). Topographic complexity and roughness of a tropical benthic seascape. Geophysical Research Letters, Vol. 37, L14604.

網頁資料
76. Fragstats 軟體及操作手冊下載
http://www.umass.edu/landeco/research/fragstats/fragstats.html
77. ICAMS 軟體下載 (需取得作者同意)
http://www.rsgis.envs.lsu.edu/icams.asp
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code