Responsive image
博碩士論文 etd-0708118-085732 詳細資訊
Title page for etd-0708118-085732
論文名稱
Title
藉由解析方式界定磁通切換永磁電動機之初始最佳化空間
Analytical multi-parameter interval determinations of the flux-switching permanent magnet motors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-08
關鍵字
Keywords
磁通切換永磁電機、反應曲面、等效磁路模型、電動機車、行動輔具
magnetic equivalent circuit, flux-switching permanent magnet motor, response surface methodology, mobile auxiliary device, electric vehicle motor
統計
Statistics
本論文已被瀏覽 5677 次,被下載 3
The thesis/dissertation has been browsed 5677 times, has been downloaded 3 times.
中文摘要
磁通切換永磁電機具有高轉矩密度、類弦波的反電勢與堅固的轉子結構,近年已廣泛應用在工業、民生、商業等領域上。電機在不同的應用下有著相異的功率等級與機構尺寸,因此本論文主旨為提出通用的磁通切換永磁電機之等效磁路模型,並針對行動輔具與電動機車電動機之兩種應用進行探討,快速界定出符合該應用的性能條件之結構參數範圍。接著搭配反應曲面二階迴歸線模型,推導出參數之多維度空間轉矩迴歸表示式,以掌握各參數對電機性能影響趨勢。最後在多維度空間中,適當地選取最佳解範圍,運用有限元素分析最佳化找出行動輔具與電動機車電動機之兩種應用最佳結構參數組合。
Abstract
Among permanent magnet brushless machines, flux-switching permanent magnet (FSPM) motors provide significant advantages such as high torque density, sinusoidal back electromotive force waveform, and robust structure. FSPM motors have been widely employed in industrial, residential, and commercial applications in recent years. In this thesis, two applications, namely the mobile auxiliary device and the electric vehicle motor, have been analyzed. Based on general FSPM magnetic equivalent circuit (MEC), the feasible range of each structural parameter can quickly be defined. By second-order regression equation of response surface methodology (RSM), torque regression equation of the parameters can be deduced. This derived equation can be a multi-dimensional space to identify the optimal parameter ranges. Finally, the optimal parameter compositions for the two applications are defined by finite element analyses.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
符號對照表 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 3
1.3 研究重點與目標 4
第二章 磁通切換永磁電機結構 5
2.1 磁通切換電機(FSPM)概述 5
2.2 FSPM電機原理 6
2.3 FSPM電機齒極數分析 8
2.4 FSPM電機種類 12
第三章 FSPM電機等效磁路模型 13
3.1 等效磁路模型概述 13
3.2 FSPM電機等效磁路模型 17
3.3 磁路模型分析與驗證 24
第四章 應用於行動輔具之FSPM電機設計分析 27
4.1 行動輔具機構設計條件 28
4.2 界定最佳化初始空間 30
4.2.1 反應曲面概述 30
4.2.2 反應曲面設計與分析 31
4.3 以數值解進行設計驗證 37
4.3.1 有限元素概述 37
4.3.2 電機性能分析 38
第五章 應用於電動機車之FSPM電機設計分析 42
5.1 電動機車機構設計條件 42
5.2 界定最佳化初始空間 46
5.3 以數值解進行設計優化 50
5.3.1 田口法概述 50
5.3.2 田口法設計與分析 51
第六章 結論 56
參考文獻 57
參考文獻 References
[1] 黃雅琪、黃緻惟,全球高效率馬達市場與產業發展趨勢,工研院產經中心,2017年。
[2] SIEMENS/Home/Antriebstechnik/Motoren/Niederspannugsmotoren/Effizienzklassen fur IEC Netzmotoren, https://www.siemens.de/international-efficiency, Apr. 2016.
[3] 鄭詠仁,台灣推動實施IE2/IE3馬達效率管理構想規畫,工研院高效率馬達工業動力設備能源效率驗證與推廣計畫,2014年 。
[4] S. Mutreja, “Permanent magnet synchronous motor (PMSM) market by voltage range (above 60V, 41V-60V, 31V-40V, 21V-30V, 10V-20V, 9V and below) and application (automation, consumer electronics, residential & commercial, automotive & transportation, lab equipment, medical, military/Aerospace) - global opportunity analysis and industry forecast, 2015 - 2022, ” Allied Market Research, CO_16987, pp. 118, Jun. 2016.
[5] M. J. Melfi, S. D. Rogers, S. Evon, and B. Martin, “Permanent magnet motors for energy savings in industrial applications,” IEEE Trans. Industry Applications, vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
[6] United Nations Department of Economic and Social Affairs Population Division, “World population ageing 2013,” United Nations Department of Economic and Social Affairs Population Division, Dec. 2013.
[7] J. Miller, L. Du, and D. Kodjak, “Impacts of world-class vehicle efficiency and emission regulations in select G20 countries,” Proc. The International Council On Clean Transportation, Jan. 2017.
[8] S. E. Rauch and L. J. Johnson, “Design principles of flux-switching alternators,” AIEE Trans., vol. 74, no. 3, pp. 1,261-1,268, 1955.
[9] E. Hoang, A. H. B. Ahmed, and J. Lucidarme, “Switching flux permanent magnet polyphased synchronous machines,” Proc. 7th Eur. Conf. Power Electron. and Applications, vol. 3, pp. 903-908, Trondheim, Norway, Sep. 1997.
[10] A. S. Thomas, Z.-Q. Zhu, R.-L. Owen, G.-W. Jewell, and D. Howe, “Multiphase flux-switching permanent-Magnet brushless machine for aerospace application,” IEEE Trans. Industry Applications, vol. 45, no. 6, pp. 1,971-1,981, Nov. /Dec. 2009.
[11] Z.-X. Fang, Y. Wang, J.-X. Shen, and Z.-W. Huang, “Design and analysis of a novel flux-switching permanent magnet integrated-starter-generator,” Proc. 4th IET Conf. Power Electronics Machines and Drives, DOI: 10.1049/cp:20080492, York, UK, Apr. 2008.
[12] J. Zhang, M. Cheng, and Z. Chen, “Optimal design of stator interior permanent magnet machine with minimized cogging torque for wind power application,” Energy Conversion and Management, vol. 49, no. 8, pp. 2,100-2,105, Feb. 2008.
[13] Y. Cheng, C. Pollock, and H. Pollock, “A permanent magnet flux switching motor for low energy axial fans,” Proc. IEEE Trans. Industry Applications Conf., DOI: 10.1109/IAS.2005.1518747, Kowloon, Hong Kong, China, Oct. 2005.
[14] D. Ishak, Z.-Q. Zhu, and D. Howe, “Comparison of PM brushless motors, having either all teeth or alternate teeth wound,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 95-103, Mar. 2006.
[15] J.-T. Chen, Z.-Q. Zhu, A. S. Thomas, and D. Howe, “Optimal combination of stator and rotor pole numbers in flux-switching PM brushless AC machines”, Proc. IEEE Conf. Electrical Machines and Systems, INSPEC no. 10467590, Wuhan, China, Oct. 2008.
[16] Y. Shi, L. Jian, J. Wei, and Z. Shao, “A new perspective on the operating principle of flux-switching permanent-magnet machines,” IEEE Trans. Industry Electron., vol. 63, no. 3, pp. 1,425-1,437, Mar. 2016.
[17] W. Xu, J. Zhu, Y. Zhang, Y. Guo, and G. Lei, “New axial laminated structure flux-switching permanent magnet machine with 6/7 poles,” IEEE Trans. Magn., vol. 47, no. 10, pp. 2,823-2,826, Oct. 2011.
[18] Y. Wang, Z.-W. Huang, J.-X. Shen, and C.-F. Wang, “Comparison and study of 6/5- and 12/10-pole permanent magnet flux-switching motors considering flux-weakening capability,” Proc. IEEE Conf. Electrical Machines and Systems, INSPEC no. 10458823, Wuhan, China, Oct. 2008.
[19] F. Khan, E. Sulaiman, and M. F. Omar, “Design and characteristic investigations of 12Slot-8Pole and 12Slot-10Pole wound field three-phase switched-flux machines,” Proc. 3rd IET Conf. Clean Energy and Technology, DOI: 10.1049/cp.2014.1518, Kuching, Malaysia, Nov. 2014.
[20] A. Thomas, Z. Zhu, G. Jewell, and D. Howe, “Flux-switching pm brushless machines with alternative stator and rotor pole combinations,” Proc. IEEE Conf. Electrical Machines and Systems, DOI: 10.4130/jaev.6.1103, Wuhan, China, Oct. 2008.
[21] Z.-Q. Zhu and J.-T. Chen, “Advanced flux-switching permanent magnet brushless machines,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1,447-1,453, Jun. 2010.
[22] J.-T. Chen, Z.-Q. Zhu, S. Iwasaki, and R. P. Deodhar, “A novel E-core switched flux PM brushless AC machine,” IEEE Trans. Industry Applications, vol. 47, no. 3, pp. 1,273-1,282, May/Jun. 2011.
[23] J.-T. Chen, Z.-Q. Zhu, and D. Howe, “Stator and rotor pole combinations for multi-tooth flux-switching permanent-magnet brushless ac machines,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4,659-4,667, Dec. 2008.
[24] Q. Chen, W. Ding, and J. Du , “Design studies of a special hybrid excitation flux-switching motor drive for HEV,” Proc. IEEE Vehicle Power and Propulsion Conf., DOI: 10.1109/VPPC.2016.7791662, Hangzhou, China, Dec. 2016.
[25] J. Krenn and H. Weiss, “Three phase flux switching machine with hybrid excitation — Design and implementation,” Proc. 17th Ural Conf. AC Electric Drives, DOI: 10.1109/ACED.2018.8341725, Ekaterinburg, Russia, Apr. 2018.
[26] D. Kim, H. Hwang, S. Bae, and C. Lee, ‘‘Analysis and design of a double-stator flux-switching permanent magnet machine using ferrite magnet in hybrid electric vehicles,’’ IEEE Trans. Magn., vol. 52, no. 7, Jul. 2016, Art. ID 8106604.
[27] Z. Zhu, Z. Wu, D. Evans, and W. Chu, “A wound field switched flux machine with field and armature windings separately wound in double stators,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 772-783, Jun. 2015.
[28] E. R. Laithwaite, “Magnetic equivalent circuits for electrical machines,” Proc. Institution of Electrical Engineers, vol. 114, no.11, pp. 1,805-1,809, Nov. 1967.
[29] Z.-Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, “Analysis of electromagnetic performance of flux-switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model,” IEEE Trans. Magn., vol. 41, no. 11, pp. 4,277-4,287, Nov. 2005.
[30] J.-T. Chen and Z.-Q. Zhu, “Influence of the rotor pole number on optimal parameters in flux-switching PM brushless AC machines by the lumped-parameter magnetic circuit model,” IEEE Trans. Industry Applications, vol. 46, no. 4, pp. 1,381-1,388, May 2009.
[31] Maxon Motor. (2017, Nov. 3). Driven by Precision, Maxon EC flat motors
[Online]. Available: https://www.maxonmotor.com/maxon/view/content/ec-flat-
motors.
[32] R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Am. Math. Soc., vol. 49, no.1, pp. 1-23, 1943.
[33] C. Sikder, I. Husain, and W. Ouyang, “Cogging torque reduction in flux-switching permanent magnet machines by rotor pole shaping,” IEEE Trans. Industry Applications, vol. 55, no. 5, pp. 3,609-3,619, Sep./Oct. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code