Responsive image
博碩士論文 etd-0708118-093546 詳細資訊
Title page for etd-0708118-093546
論文名稱
Title
探討HDGF之細胞膜結合蛋白及HDGF S103A點突變對其生物功能之影響
Investigation of hepatoma-derived growth factor (HDGF) membrane binding protein and biological functions in HDGF S103A mutation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-08
關鍵字
Keywords
葡萄糖調節蛋白質78、膜聯蛋白A2、核仁磷酸蛋白、核仁素、肝癌衍生生長因子、肝癌
Annexin A2 (ANXA2), GRP78, Nucleophosmin (B23), Nucleolin (NCL), Hepatoma-derived growth factor (HDGF), Hepatocellular carcinoma (HCC)
統計
Statistics
本論文已被瀏覽 5617 次,被下載 0
The thesis/dissertation has been browsed 5617 times, has been downloaded 0 times.
中文摘要
肝癌衍生生長因子 (hepatoma-derived growth factor, HDGF) 為一種存在細胞核之生長因子,會促進細胞生長及轉移。先前研究指出,在眾多癌症中,HDGF皆有大量表現的現象,進而造成癌細胞的增生及上皮細胞-間質轉移 (epithelial mesenchymal transition, EMT)。HDGF在癌症進程中扮演了重要的角色,但其訊息傳遞路徑仍為未知。本實驗室先前的研究發現,核仁素 (Nucleolin, NCL) 在肝癌細胞中會從細胞核移動到細胞膜與HDGF結合,並活化PI3K/AKT的訊息傳遞路徑,進而引發細胞的增生及移行。HDGF由PWWP及C140組成,而NCL則可分為三個區域 (domain I, II, III)。我們以螢光標記的HDGF觀察HDGF移動的過程,發現HDGF在四個小時內會進入細胞。接著,我們透過固相結合分析 (Solid phase binding assay),提出HDGF是透過PWWP跟NCL第二個區域進行結合。從親和管柱分析及質譜分析中,我們發現除了NCL之外,核仁磷酸蛋白 (Nucleophosmin, B23)、膜聯蛋白A2 (Annexin A2) 及葡萄糖調節蛋白質78 (GRP78) 皆可能與HDGF有交互作用。因此,我們利用抗體中和方式將NCL、B23、Annexin A2及GRP78進行中和,發現當NCL、B23及GRP78被中和時,HDGF攝入細胞的情形會降低,顯示這幾個膜蛋白在HDGF與細胞結合扮演重要的角色。另外,先前研究也指出,HDGF為一個磷酸化蛋白,在103號位的絲胺酸 (Serine) 為一個重要的磷酸化位點,若將此為點突變為丙胺酸 (Alanine),HDGF將喪失促進有絲分裂的功能。然而,HDGF於S103位點的突變是否會影響到與Nucleolin的結合及HDGF與Nucleolin結合後所誘發的下游訊息傳遞則尚未得知。我們透過固相結合分析及免疫螢光染色發現,當S103位點被突變為丙胺酸 (Alanine) 時,雖然HDGF S103A與NCL結合能力不會改變,但影響到HDGF攝入細胞中。我們推測,這可能是造成S103A 點突變造成HDGF喪失誘發細胞侵襲及喪失誘細胞增生能力的原因。綜合上述結果可了解NCL domain II 為HDGF與細胞結合的重要位置; HDGF S103A的突變將使HDGF喪失其生物功能。此發現可以做為HDGF未來癌症治療標靶開發及HDGF所誘發相關疾病之應用。
Abstract
Hepatoma-derived growth factor (HDGF) is a nuclear targeted growth factor identified from human hepatocellular carcinoma (HCC) cell line, Huh7. Based on clinical studies, HDGF overexpression promotes tumor progression through stimulating proliferation and epithelial-mesenchymal transition (EMT). HDGF was considered as a poor prognostic factor for cancer patients in survival, however, the signaling pathway of HDGF is remains unclear. Our recent study indicates that HDGF may exerts its oncogenic function via binding to membrane Nucleolin (NCL) and activating the downstream PI3K/AKT signaling. HDGF is consist of PWWP and C140 domains; NCL is composed of three distinct domains (domain I, II, III). By using Alexa-488 fluorescent labeled HDGF, we have determined that the exogenous HDGF could be uptake within 4 hours. Subsequently, by using solid phase binding assay, we have demonstrated that HDGF bound to NCL domain II via its PWWP domain. By using affinity chromatography and MASS spectrum, we have characterized several membrane proteins such as B23, Annexin A2 and GRP78 that involved in HDGF-binding membrane complex. Using antibodies neutralization, we have confirmed not only NCL, but also B23 and GRP78 that play important roles in HDGF interaction and HDGF uptake. Furthermore, previous studies showed that S103 phosphorylation site playing a critical role in regulating HDGF mitogenic function. Our data has suggested HDGF S103A mutation lead to loss of HDGF-mediated cell invasion and cell proliferation. This study has revealed the importance of NCL domain II in HDGF binding; Besides, S103 position in HDGF is critical for the biological function in HDGF. This finding suggested that targeting HDGF membrane bound may provide a new strategy for cancer therapy and HDGF related diseases.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
Contents iv
Figures and Legends index v
INTRODUCTION 1
MATERIALS AND METHODS 10
RESULTS 18
DISCUSSION 25
FIGURES AND LEGENDS 29
REFERENCES 51
Appendix 62
參考文獻 References
1. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
2. El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012. 142(6): p. 1264-1273 e1.
3. Yang, J.D., et al., Cirrhosis is present in most patients with hepatitis B and hepatocellular carcinoma. Clin Gastroenterol Hepatol, 2011. 9(1): p. 64-70.
4. Lok, A.S., et al., Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology, 2009. 136(1): p. 138-48.
5. Dyson, J., et al., Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol, 2014. 60(1): p. 110-7.
6. Kanwal, F., et al., Trends in the Burden of Nonalcoholic Fatty Liver Disease in a United States Cohort of Veterans. Clin Gastroenterol Hepatol, 2016. 14(2): p. 301-8 e1-2.
7. Ioannou, G.N., et al., The prevalence of cirrhosis and hepatocellular carcinoma in patients with human immunodeficiency virus infection. Hepatology, 2013. 57(1): p. 249-57.
8. Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2016. 2: p. 16018.
9. Pikarsky, E., et al., NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004. 431(7007): p. 461-6.
10. Hernandez-Gea, V., et al., Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology, 2013. 144(3): p. 512-27.
11. Franssen, B., et al., Differences in surgical outcomes between hepatitis B- and hepatitis C-related hepatocellular carcinoma: a retrospective analysis of a single North American center. Ann Surg, 2014. 260(4): p. 650-6; discussion 656-8.
12. Llovet, J.M., M. Schwartz, and V. Mazzaferro, Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis, 2005. 25(2): p. 181-200.
13. Bruix, J., M. Sherman, and D. American Association for the Study of Liver, Management of hepatocellular carcinoma: an update. Hepatology, 2011. 53(3): p. 1020-2.
14. Mazzaferro, V., et al., Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med, 1996. 334(11): p. 693-9.
15. Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.
16. Prieto, J., I. Melero, and B. Sangro, Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2015. 12(12): p. 681-700.
17. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
18. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.
19. Wilhelm, S.M., et al., Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther, 2008. 7(10): p. 3129-40.
20. Bruix, J., et al., Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2015. 16(13): p. 1344-54.
21. Nakamura, H., et al., Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem, 1994. 269(40): p. 25143-9.
22. Dietz, F., et al., The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J, 2002. 366(Pt 2): p. 491-500.
23. Abouzied, M.M., et al., Expression patterns and different subcellular localization of the growth factors HDGF (hepatoma-derived growth factor) and HRP-3 (HDGF-related protein-3) suggest functions in addition to their mitogenic activity. Biochem J, 2004. 378(Pt 1): p. 169-76.
24. Yang, J. and A.D. Everett, Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol, 2007. 8: p. 101.
25. Stec, I., et al., The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett, 2000. 473(1): p. 1-5.
26. Zhao, J., et al., Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics, 2011. 75(2): p. 588-602.
27. Abouzied, M.M., et al., Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem, 2005. 280(12): p. 10945-54.
28. Sue, S.C., et al., Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol, 2004. 343(5): p. 1365-77.
29. Nusse, J., et al., Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem, 2016. 397(5): p. 417-36.
30. Bernard, K., et al., Functional proteomic analysis of melanoma progression. Cancer Res, 2003. 63(20): p. 6716-25.
31. Everett, A.D., et al., Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol, 2011. 12: p. 15.
32. Thakar, K., et al., Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem, 2010. 391(12): p. 1401-10.
33. Jhaveri, N., T.C. Chen, and F.M. Hofman, Tumor vasculature and glioma stem cells: Contributions to glioma progression. Cancer Lett, 2016. 380(2): p. 545-51.
34. Chen, T.C., et al., Bisphenol A occurred in Kao-Pin River and its tributaries in Taiwan. Environ Monit Assess, 2010. 161(1-4): p. 135-45.
35. Lepourcelet, M., et al., Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development, 2005. 132(2): p. 415-27.
36. Mao, J., et al., Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation. Cancer Sci, 2008. 99(11): p. 2120-7.
37. Chen, S.C., et al., Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. J Pathol, 2012. 228(2): p. 158-69.
38. Tsai, H.E., et al., Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected]. PLoS One, 2013. 8(3): p. e59345.
39. Zhang, G., et al., High Serum HDGF Levels Are Predictive of Bone Metastasis and Unfavorable Prognosis in Non-Small Cell Lung Cancer. Tohoku J Exp Med, 2017. 242(2): p. 101-108.
40. Uyama, H., et al., Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res, 2006. 12(20 Pt 1): p. 6043-8.
41. Yamamoto, S., et al., Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res, 2006. 12(1): p. 117-22.
42. Chen, S.C., et al., Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget, 2015. 6(18): p. 16253-70.
43. Kao, Y.H., et al., Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. J Hepatol, 2010. 52(1): p. 96-105.
44. Mori, M., et al., Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol, 2004. 30(4): p. 459-69.
45. Zhao, W.Y., et al., Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun, 2013. 435(3): p. 466-71.
46. Shih, T.C., et al., MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol, 2012. 57(3): p. 584-91.
47. Thirant, C., et al., Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells, 2012. 30(5): p. 845-53.
48. Hu, T.H., et al., Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer, 2003. 98(7): p. 1444-56.
49. Everett, A.D., et al., Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol, 2004. 286(6): p. L1194-201.
50. Okuda, Y., et al., Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci, 2003. 94(12): p. 1034-41.
51. Lee, K.H., et al., Hepatoma-derived growth factor regulates the bad-mediated apoptotic pathway and induction of vascular endothelial growth factor in stomach cancer cells. Oncol Res, 2010. 19(2): p. 67-76.
52. Hugo, H., et al., Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol, 2007. 213(2): p. 374-83.
53. Barclay, M., et al., Serum lipoproteins in rats with tumors induced by 9,10-dimethyl-1,2-benzanthracene and with transplanted Walker carcinosarcoma 256. Cancer Res, 1967. 27(6): p. 1158-67.
54. Yang, F., et al., Downregulated expression of hepatoma-derived growth factor inhibits migration and invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS One, 2018. 13(1): p. e0190725.
55. Sun, B., et al., MiR-610 inhibits cell proliferation and invasion in colorectal cancer by repressing hepatoma-derived growth factor. Am J Cancer Res, 2015. 5(12): p. 3635-44.
56. Bao, C.H., et al., Irradiated fibroblasts promote epithelial-mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma. Biochem Biophys Res Commun, 2015. 458(2): p. 441-7.
57. Wang, C.H., et al., Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J, 2011. 433(1): p. 127-38.
58. Zhang, J., et al., HDGF and ADAM9 are novel molecular staging biomarkers, prognostic biomarkers and predictive biomarkers for adjuvant chemotherapy in surgically resected stage I non-small cell lung cancer. J Cancer Res Clin Oncol, 2014. 140(8): p. 1441-9.
59. Machuy, N., et al., A global approach combining proteome analysis and phenotypic screening with RNA interference yields novel apoptosis regulators. Mol Cell Proteomics, 2005. 4(1): p. 44-55.
60. Tsang, T.Y., et al., Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis, 2008. 13(9): p. 1135-47.
61. Tsang, T.Y., et al., Mechanistic study on growth suppression and apoptosis induction by targeting hepatoma-derived growth factor in human hepatocellular carcinoma HepG2 cells. Cell Physiol Biochem, 2009. 24(3-4): p. 253-62.
62. Ren, H., Z. Chu, and L. Mao, Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer. Mol Cancer Ther, 2009. 8(5): p. 1106-12.
63. Bouvet, P., et al., Nucleolin interacts with several ribosomal proteins through its RGG domain. J Biol Chem, 1998. 273(30): p. 19025-9.
64. Tajrishi, M.M., R. Tuteja, and N. Tuteja, Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol, 2011. 4(3): p. 267-75.
65. Ginisty, H., et al., Structure and functions of nucleolin. J Cell Sci, 1999. 112 ( Pt 6): p. 761-72.
66. Berger, C.M., X. Gaume, and P. Bouvet, The roles of nucleolin subcellular localization in cancer. Biochimie, 2015. 113: p. 78-85.
67. Jia, W., et al., New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci, 2017. 186: p. 1-10.
68. Song, N., et al., The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells. Angiogenesis, 2012. 15(4): p. 697-711.
69. Shi, H., et al., Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood, 2007. 110(8): p. 2899-906.
70. Seo, Y.M., et al., Copine-7 binds to the cell surface receptor, nucleolin, and regulates ciliogenesis and Dspp expression during odontoblast differentiation. Sci Rep, 2017. 7(1): p. 11283.
71. Destouches, D., et al., Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS One, 2008. 3(6): p. e2518.
72. Joo, E.J., et al., Induction of nucleolin translocation by acharan sulfate in A549 human lung adenocarcinoma. J Cell Biochem, 2010. 110(5): p. 1272-8.
73. Bao, C., et al., HDGF: a novel jack-of-all-trades in cancer. Future Oncol, 2014. 10(16): p. 2675-85.
74. Said, E.A., et al., The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem, 2002. 277(40): p. 37492-502.
75. Tate, A., et al., Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells. BMC Cancer, 2006. 6: p. 197.
76. Fujiki, H., T. Watanabe, and M. Suganuma, Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol, 2014. 140(5): p. 689-99.
77. Joo, E.J., et al., Nucleolin: acharan sulfate-binding protein on the surface of cancer cells. Glycobiology, 2005. 15(1): p. 1-9.
78. Leotoing, L., et al., Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene, 2008. 27(20): p. 2858-67.
79. Tanaka, M., et al., Genes preferentially expressed in embryo stomach are predominantly expressed in gastric cancer. Cancer Res, 1992. 52(12): p. 3372-7.
80. Holmberg Olausson, K., et al., NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep, 2015. 5: p. 16495.
81. Yun, J.P., et al., Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters. Br J Cancer, 2007. 96(3): p. 477-84.
82. Lindstrom, M.S., NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int, 2011. 2011: p. 195209.
83. Li, Y.P., et al., C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem, 1996. 237(1): p. 153-8.
84. Ahn, J.Y., et al., Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell, 2005. 18(4): p. 435-45.
85. Mohammad, H.S., et al., Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int J Oncol, 2008. 33(6): p. 1157-63.
86. Chen, W.T., et al., GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene, 2014. 33(42): p. 4997-5005.
87. Su, R., et al., Grp78 promotes the invasion of hepatocellular carcinoma. BMC Cancer, 2010. 10: p. 20.
88. Arap, M.A., et al., Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell, 2004. 6(3): p. 275-84.
89. Zhang, Y., et al., Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem, 2010. 285(20): p. 15065-75.
90. Gonzalez-Gronow, M., et al., Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res, 2006. 66(23): p. 11424-31.
91. Davidson, D.J., et al., Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res, 2005. 65(11): p. 4663-72.
92. Burikhanov, R., et al., The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell, 2009. 138(2): p. 377-88.
93. Altomare, D.A. and J.R. Testa, Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005. 24(50): p. 7455-64.
94. Kung, M.L., et al., Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun, 2012. 425(2): p. 169-76.
95. Zhang, Y., et al., Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS One, 2013. 8(11): p. e80071.
96. Beausoleil, S.A., et al., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A, 2004. 101(33): p. 12130-5.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.121.131
論文開放下載的時間是 校外不公開

Your IP address is 13.58.121.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code