Responsive image
博碩士論文 etd-0708118-161818 詳細資訊
Title page for etd-0708118-161818
論文名稱
Title
兩步驟製造有機-無機混合薄膜鈣鈦礦太陽能電池之研究
Research on Two-Step Manufacturing of Organic-Inorganic Hybrid Perovskite Thin Films For Solar Cell Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-08
關鍵字
Keywords
兩步驟溶液製程、反溶劑、MAI溶液、鈣鈦礦太陽能電池
anti-solvent, MAI precursor solution, Keywords: perovskite solar cell, two-step sequential solution deposition
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
本論文探討兩步驟溶液製程(Two-step sequential solution deposition method)方法,製備高品質的鈣鈦礦吸收層,並進行薄膜性質分析與元件製作。藉由熱蒸鍍製備一層PbI2薄膜,再將PbI2薄膜浸入MAI溶液製成MAPbI3。我們使用不同濃度的MAI溶液,以及使用MAI與MACl混合溶液將PbI2薄膜轉化為MAPbI3結構,藉此觀察MAI濃度及溶液中MACl成分對於晶粒大小,覆蓋率,及組成成份的影響,以找出最佳製程參數配方,希望藉此提升鈣鈦礦薄膜在基板上的覆蓋率,以及減少晶界阻礙電子和電洞的傳播。

第一部分,我們使用SEM影像以分析所成長薄膜的形貌與晶粒結構。第二部分,利用XRD以鑑定薄膜是否已完全轉化為鈣鈦礦結構。第三部分,利用UV-vis吸收光譜也用作了解轉化後薄膜之吸收光譜。最後,我們也進行二次質譜(SIMS)以了解溶液中不同成分對於薄膜之組成及期縱深分佈之影響。

此外,本論文也針對所轉化的MAPbI3薄膜,使用反溶劑(anti-solvent)處理,以改善其在大氣下之穩定性進行探討。處理後的MAPbI3薄膜可有效的在薄膜表層建立一層緻密的防水層,防止水氣再度進入薄膜內部造成MAPbI3分解,而破壞鈣鈦礦的結構,藉此提升所轉化的MAPbI3薄膜及後續製成元件在大氣下的穩定性。
Abstract
The thesis presents a study of the two-step sequential solution deposition process was studied for the preparation of high quality perovskite absorber layers for film performance analysis and device fabrication. PbI2 thin film was deposited by thermal evaporation and then soaked in the MAI solution to convert into MAPbI3 thin film. Different concentrations of MAI solutions, as well as solutions with different MACl contents were used to study how the crystallinity and coverage of the perovskite films are influenced by the parameters.

In the first part, SEM was used for the morphology and crystallinity. In the second part, XRD was used to study the crystalline structure of the films. The third part,
UV-vis absorption spectroscopy was used for the absorption spectra. Finally, secondary ion mass spectroscopy (SIMS) was used to probe the contents in the films and their depth profile.

Moreover, we apply anti-solvent to form a dense waterproof layer on the surface of the perovskite film to improve the stability under ambient condition. The process prevents water from entering the interior of the perovskite films, hence to retard the decomposition of the perovskite structure. Our results indicate that the method would be essential for the high-efficient and air-stable perovskite solar cells.
目次 Table of Contents
Contents
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 Background and literature review 2
2.1 Introduction to solar cell 2
2.1.1. The principles of photoelectric conversion of solar cells 7
2.1.2. The Basic parameters of solar cells 9
2.1.3. The equivalent circuit of solar cell 11
2.2. The history of perovskites 12
2.2.1. The introduction of perovskites 13
2.2.2. The development of perovskite solar cells 14
2.2.3. The structure of Perovskite 24
2.2.4. Chlorine, bromine, iodine in perovskite solar cells 29
2.2.5. The mixed-halide perovskite 30
Chapter 3 Experimental procedures 32
3.1. Materials 32
3.1.1. Chemicals 33
3.1.2. The equipment and instruments 34
3.2. The introduction of the principle of operation and analysis 35
3.2.1. X-ray diffraction (XRD) 35
3.2.2. Ultraviolet-visible abdorption spectrometer 37
3.2.3. Field emission scanning electron microscope (FESEM) 39
3.2.4. Alpha-step profilometer (α-step) 40
3.2.5. Preparation of perovskite absorbing layer 40
Chapter 4 Results and discussion 42
4.1. The effect of the absorption coefficient on different thickness of PbI2 films 43
4.2. The effect of MAI concentration on grain size of perovskite 44
4.3. The effect of different anti-solvents on the morphology of MAPbI3 47
4.4. Discussion on two - component mixed perovskite film of iodine and chlorine 52
4.5. The effect of acetonitrile addition on MAPbI3-xClx thin film 57
Conclusion 62
References 63


參考文獻 References
References
[1] https://djena.engineering.cornell.edu/hws/history_of_semiconductors.pdf
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 25, 676 (1954).
[3] D.E. Carlson and C.R. Wronski, Amorphous Silicon Solar Cell. Appl. Phys. Lett. 28, 671 (1976).
[4] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J.C.S. Chem. Commun. 16, 578 (1977).
[5] The Institute of Energy Conversion: The First Twenty-five Years: 1972-1997 http://www.udel.edu/iec/history.html
[6] The History of Solar https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf
[7] Q. Zhang, C. S. Dandeneau, S. Candelaria, D. Liu, B. B. Garcia, X. Zhou, Y.H. Jeong, and G. Cao., Effects of Lithium Ions on Dye-Sensitized ZnO Aggregate Solar Cells. Chem. Mater. 22, 2427 (2010).
[8] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050 (2009).
[9] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2, 591 (2012).
[10] http://www.nrel.gov/pv/
[11] B. O'Regan, M. Graetzel., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
[12] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009).
[13] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088-4093 (2011).
[14] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012).
[15] L. Etgar, G. Peng, Z. Xue, B. Liu, M. K. Nazeeruddin, M. Graetzel., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396-17399 (2012).
[16] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Graetzel., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013).
[17] M. Liu, M. B. Johnston, H. J. Snaith., Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395-398 (2013).
[18] D. Liu, T. L. Kelly., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133-138 (2015).
[19] W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522-525 (2015).
[20] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang., Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014).
[21] J. H. Im, J. Luo, M. Franckevičius, N Pellet, P. Gao, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Graetzel, N. G. Park., Nanowire perovskite solar cell. Nano lett. 15, 2120-2126 (2015).
[22] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. Seok., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015).
[23] D. Bi, B. Xu, P. Gao, L. Sun, M. Graetzel, A. Hagfeldt., Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23, 138-144 (2016).
[24] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. C. Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Michael Grätzel., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. ‎Energy Environ. Sci. 5, 11450-11461 (2016).
[25] https://www.yumpu.com/en/document/view/52185383/chapter-3-perovskite- perfect-lattice-atomistic-simulation-group.
[26] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. Seok., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764-1769 (2013).
[27] S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar., Band-gap tuning of lead halide perovskites using a sequential deposition process. ‎J. Mater. Chem. A 2, 9221-9225 (2014).
[28] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen., Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. ‎J. Phys. Chem. Lett. 5, 429-433 (2014).
[29] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. D. Angelis, R. Mosca., MAPBI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. ‎Chem. Mater. 25, 4613-4618 (2013).
[30] P. W. Liang, C. C. Chueh, X. K. Xin, F. Zuo, S. T. Williams, C. Y. Liao, A. Y. Jen., High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites. ‎Adv. Energy Mater. 5, 1400960 (2015).
[31] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982-988 (2014).
[32] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis., Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489-494. (2014).
[33] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith., Lead-Free Organic- Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. 5, 11436-11449 (2014).
[34] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. ‎J. Phys. Chem. Lett. 5, 1004-1011 (2014).
[35] Y. Ma, L. Zheng, Y. H. Chung, S. Chu, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Z. Wu, X. Hou., A highly efficient mesoscopic solar cell based on CH3NH3PbI3-xClx fabricated via sequential solution deposition. ‎Chem. Commun. 50, 12458-12461 (2014).
[36] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang., Low-temperature solution- processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674-1680 (2014).
[37] B. D. Cullity and S. R. Stock, Elements oF X-RAY Diffraction, Prentice Hall,
American, (2001).
[38] http://espectrofotometria1.blogspot.com/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code