Responsive image
博碩士論文 etd-0709102-023430 詳細資訊
Title page for etd-0709102-023430
論文名稱
Title
準相位匹配鈮酸鋰晶纖之研製
The Study and Fabrication of Quasi-phase-matched LiNbO3 Crystal Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-05
繳交日期
Date of Submission
2002-07-09
關鍵字
Keywords
準相位匹配
PPLN
統計
Statistics
本論文已被瀏覽 5671 次,被下載 5323
The thesis/dissertation has been browsed 5671 times, has been downloaded 5323 times.
中文摘要
鈮酸鋰由於易於生長,且具有高的非線性係數、良好的光學品質,因而廣泛地應用於光頻率轉換、電光調制、表面音頻濾波、光折變記錄等領域。

本論文之研究目的在於發展出鈮酸鋰晶纖之準相位匹配結構,以應用於波長轉換器,利用雷射加熱基座生長法之架構外加一高電場導致週期性區域反轉結構之鈮酸鋰晶纖 。在結構設計方面,我們以串接二階非線效應作為基礎,設計了在1.55
Abstract
Lithium niobate(LiNbO3) has been widely used in optical frequency converter, electro-optical modulator, surface acoustic waveguide filter, and photorefractive recording due to its ease of growth, high nonlinear coefficient, and excellent optical quality.

In this thesis, we report the use of laser-heated-pedestal growth technique on LiNbO3 crystal fibers with in-situ electric field. In the process of the wavelength conversion, based on the cascaded second-order nonlinearity, we designed a 1.55-mm-band wavelength converter in optical communication, which has spectral widths for the pumping source and the output signal of 0.78nm and 80nm, respectively. In the experiment, we had grown a-axis single domain LiNbO3 crystal fiber. We also studied the dynamics of poling mechanism for various electric field. We applied 1kV/mm electric field near the Curie temperature on the LiNbO3 with the diameter up to 190mm and got a periodic domain structure of 18.9mm. The techniques are expected to be useful for in high-efficient nonlinear optical applications.

目次 Table of Contents
中文摘要 Ⅰ
英文摘要 Ⅱ
圖目錄 Ⅲ
表目錄
第一章 緒論 1

第二章 相位匹配原理與區域反轉機制 4
2.1 雙折射相位匹配 4
2.2 準相位匹配 12
2.3 區域反轉機制 19
2.4 區域反轉結構製作方式 22

第三章 單域鈮酸鋰晶纖之製作 26
3.1 生長方法與架構 26
3.2 鑲埋、研磨、拋光及蝕刻 33
3.3 特性量測 40

第四章 準相位匹配元件之研製 47
4.1 元件設計 47
4.2 腔外高壓電場極化反轉 51
4.3 腔內外加電場極化反轉 55
4.4 結果與分析 60

第五章 結論與未來展望 61

參考文獻 62
中英對照表 67
參考文獻 References
[1] S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol., vol. 14, pp. 955-966, 1996.
[2] S. J. B. Yoo, M. A. Koza, C. Caneau, and R. Bhat, “Simultaneous wavelength conversion of 2.5-Gbit/s and 10-Gbit/s signal channels by difference-frequency generation in an AlGaAs waveguide,” OSA Tech. Dig. Ser., Conf. Optical Fiber Communications, vol. 2, paper WB5, 1998.
[3] C. Q. Xu, H. Okayama, and M. Kawahara, “1.5mm-band efficient in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett., vol. 63, pp. 3559-3561, 1993.
[4] C. Q. Xu, H. Okayama, and T. Kamijoh, “LiNbO3 quasi-phase-matched wavelength converter and its module,” Proc. Eur. Conf. Optical Communications, pp. 173-174, 1998.
[5] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5mm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett., vol. 11, pp. 653-655, 1999.
[6] K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate wavelength,” Appl. Phys. Lett., vol. 71, pp. 1020-1022, 1997.
[7] A. Yariv, “Opeical electrionics in modern communications,” New York Oxford, Ch. 8, 1997.
[8] J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interacton between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.
[9] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.
[10] 林宜慶, “高電壓致鈮酸鋰小週期區域反轉與動力學研究,” 國立台灣大學光電工程學研究所碩士論文, 1999.
[11] T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phy., vol. 60, pp. 217-225, 1995.
[12] L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp.1-3, 2001.
[13] D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.
[14] K. Niwa, Y. Furukawa, S. Takekawa, and K. Kitamura, “Growth and characterization of Mgo doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material,” Journal of Crystal Growth, vol. 208, pp. 493-500, 2000.
[15] E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electrom. Lett., vol. 25, pp. 731-732, 1989.
[16] J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.
[17] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Lett., vol. 4, pp. 872-875 , 1992.
[18] Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.
[19] H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222 , 1991.
[20] D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.
[21] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.
[22] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, 1993.
[23] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenbeg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.
[24] C. A. Burrus, J. Stone, “Single crystal fiber optical devices: a Nd:YAG fiber laser, ” Appl. Phys. Lett., vol. 26, pp. 318-320, 1975.
[25] G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi phase matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
[26] Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Ferroelectric domain structures in LiNbO3 single crystal fiber,” J. of Crystal Growth, vol. 78, pp. 135-143, 1986.
[27] C. Kittel, “Introduction to solid state physics,” 7th., 1997.
[28] M. Houe, and P. D. Town, “An introduction to methods of periodic poling for second-harmonic generation,” D: Appl. Phys., vol. 28, pp. 1747-1763, 1995.
[29] N. Ohnishi, and T. Lizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. of Appl. Phys., vol. 46, pp. 1063-1067, 1975.
[30] J. C. Chen, and Y. C. Lee, “The influence of temperature distribution upon the structure of LiNbO3 crystal rods grown using the LHPG method,” J. of crystal Growth, vol. 208, pp.508-512, 2000.
[31] K. Nassou, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids, vol. 27, pp. 989-996, 1966.
[32] A. A. Ballman, and H. Brown, Ferroelectrics, vol. 4, pp. 189, 1972.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code