Responsive image
博碩士論文 etd-0709104-160607 詳細資訊
Title page for etd-0709104-160607
論文名稱
Title
分子束磊晶再成長技術及氧化矽鍍膜材料之研究
Research on Regrowth by Molecular Beam Epitaxy and Silicon Oxide Coating
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-18
繳交日期
Date of Submission
2004-07-09
關鍵字
Keywords
分子束磊晶再成長、抗反射鍍膜
Anti-Reflection Coating, Molecular Beam Epitaxy Regrowth
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本論文研究主題分為二大部份: (1)分子束磊晶再成長技術探討 (2)氧化矽抗反射鍍膜之研究。在分子束磊晶再成長技術探討方面,我們以硫化銨鈍化InAlGaAs/InP樣品表面,由XPS光電子能譜實驗,比較鈍化前後XPS譜圖得知,經鈍化後的試片,可有效降低表面氧含量,適合二次磊晶的要求;因此我們架設分子束磊晶再成長系統,進行鈍化技術之研究,並討論機台實驗參數,發現鈍化後的試片,經真空剝離及昇溫加熱的除硫手續,可得符合再成長需求的界面。
對再成長磊晶層之設計,我們以Fimmwave模擬軟體,設計Beam Expander Laser結構經再成長後之脊狀波導型態,發現當脊狀波導寬度為2.5 mm,波導蝕刻深度為1.4 mm時,可得水平發散角為27.88度,垂直發散角為27.76度,為一接近圓形的光模,可提升與光纖間的耦合效率;在元件積體化方面,以BeamProp 3D軟體設計最佳夾層波導結構,得到與元件區相當吻合的光模,使光傳播損失小至0.21%以下。
第二部份為氧化矽鍍膜材料之研究,我們以穿透率、橢圓儀等量測方式,分別測定氧化矽材料的折射率,發現其在1.55 mm波段折射率為1.8837,於磷化銦基板上之最佳抗反射鍍膜厚度為2057&Aring;;為在不同有效折射率元件上,保有抗反射效果,我們以Macleod 軟體設計雙層鍍膜方式,以降低鏡面反射率。以Beam Expander Semiconductor Optical Amplifier (BESOA)元件而言,製鍍SiO2 / SiO薄膜及Si3NX / SiO雙層膜,與氧化矽單層材料比較,反射率分別下降16.86%及25.12%,而R < 1% 的波長範圍(Bandwidth)擴展了200 &Aring;。
Abstract
The thesis consists of two aspects: (1) Research on regrowth by molecular beam epitaxy, and (2) Silicon monoxide coating. In part one, we used (NH4)2Sx to passivate the InAlGaAs/InP surface. From the X-ray photoelectron spectroscopy (XPS), the passivated surface shows a dramatic reduce of oxidation. A preparation chamber for the regrowth has been setup to proceed the sulfur passivation method. We can obtain a clean surface for regrowth after heating and putting samples in the high vacuum chamber.
In the design of regrowth layers, we have found the best waveguide structure by regrowth. When the ridge width is 2.5 mm with etching depth 1.4 mm, a circular mode profile can be obtained by Fimmwave simulation. In the integration between devices, we have designed the best waveguide structure after regrowth by BeamProp 3D. The best design will make the propagation loss smaller than 0.21%.
The second part is anti-reflection (AR) coating by silicon monoxide (SiO) deposition. The SiO refractive index of 1.8837 was obtained by transmission, and ellipsometer measurements. The corresponding AR coating thickness for InP substrate is 2057 &Aring;. In order to make AR coating on lasers of different effective index, we design the double-layer coating. For Beam Expander Semiconductor Optical Amplifier (BESOA), SiO2 / SiO and Si3NX / SiO double-layer coatings were compared with SiO single layer. The reflectance (R) was reduced 16.86 % and 25.12 %, respectively, and the R < 1% bandwidth extends 200 &Aring;.
目次 Table of Contents
目錄

第一章 緒論 1
1-1 前言 1
1-2 光電子積體電路簡介 2
1-3 氧化矽鍍膜材料介紹 4
1-4 論文架構 5

第二章 分子束磊晶基本概念及系統架構 6
2-1 分子束磊晶原理 6
2-1-1 晶格匹配與能隙 6
2-1-2 X光繞射 - Rocking Curve 8
2-2 分子束磊晶系統架構 10
2-2-1 磊晶成長腔體 12
2-2-2 磊晶成長週邊系統 15
2-3 再成長系統之架設 17

第三章 磊晶結構設計與模擬 20
3-1 Beam Expander Laser結構之二次磊晶設計 20
3-2 積體元件光波導結構再成長之模擬 23

第四章 分子束磊晶實驗原理及方法 33
4-1 分子束磊晶系統操作 33
4-2 半導體界面鈍化技術 35
4-2-1 硫化鈍化技術介紹 37
4-2-2 各種硫化鈍化技術之比較 39
4-2-3 以XPS檢測硫化銨鈍化半導體界面效果 41
4-3 分子束磊晶再成長技術探討 44
4-3-1 硫化鈍化技術之應用 44
4-3-2 再成長光波導材料之選擇 46

第五章 再成長技術實驗結果與討論 49
5-1 使用XPS 分析半導體界面鈍化效果 49
5-2 再成長系統實驗參數建立 53

第六章 氧化矽鍍膜基本概念及系統架構 57
6-1 光學薄膜製鍍理論 57
6-1-1 單層抗反射膜製鍍原理 60
6-1-2 以氧化矽製鍍單層抗反射膜 63
6-2 分子束薄膜沉積系統原理及架構 65

第七章 氧化矽鍍膜實驗原理及方法 69
7-1 測定氧化矽材料折射率 69
7-1-1 製鍍AR / HR 膜層 69
7-1-2 穿透率頻譜量測系統 70
7-1-3 橢圓儀量測系統 72
7-2 微調氧化矽材料折射率 74
7-3 製鍍抗反射膜之最佳化計算 76

第八章 氧化矽鍍膜實驗結果與討論 87
8-1 測定氧化矽材料於光纖通訊波段(1.55 mm)折射率 87
8-2 微調材料折射率對增進抗反射效果之探討 96
8-3 製鍍氧化矽抗反射膜於雷射鏡面之成效 99

第九章 結論 102

參考文獻 103
附錄A MathCAD穿透率計算程式 106
附錄B 常用抗反射膜製鍍材料比較 107
附錄C 穿透率頻譜量測系統 108
附錄D Essential Macleod 8.3 薄膜製鍍設計程式 109
參考文獻 References
[1] J. E. Johnson, L. J.P. Ketelsen, J. M. Geary, F. S. Walters, J. M. Freund, M. S. Hyberisen, K. G. Glogovsky, and C. W. Lentz, “10Gb/s transmission using an electro-absorption-modulated distributed bragg reflector laser with integrated semiconductor optical amplifier,” Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Pages: ThG6-T1-3 Vol.4, 2001
[2] A. Dodabalapur and T. Y. Chang, “Molecular beam epitaxial growth of InGaAlAs /InGaAs heterojunction bipolar transistors on highly resistive low temperature InAlAs epilayers,” Appl. Phys. Lett. 61, pp.2796, 1992
[3] 張俊彥,“ 分子束磊晶成長技術的發展 ”,科儀新知,第十三卷第四期,1992
[4] 蔡曜聰, “分子束磊晶成長半導體光放大器結構” 國立中山大學光電工程研究所碩士論文,中華民國九十二年六月
[5] Ingrid Moerman, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No.6, pp.1308-1320, 1997
[6] R. A. Metzger, A. S. Brown, W. E. Stanchina, M. Lui, R. G. Wilson,
T.V. Kargodorian, L.G. McCray and J.A. Henige, “Growth and characterization of low temperature AlInAs,” J. Cryst. Growth Vol. 111, pp.445, 1991.
[7] Takemasa Tamanuki, Fumio Koyama, and Kenichi Iga,” Interface Recombination Reduction by (NH4)2Sx -Passivation in Metalorganic Chemical Vapor Deposition Regrown GaAlAs/GaAs Buried Heterostructure Lasers and Estimation of Threshold Currents in Microcavity Surface Emitting Lasers,” Jpn. J. Appl. Phys. Vol. 31 pp.3292-3295,1992
[8] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared InP/In0.53Ga0.47As surfaces,” Appl. Phys. Lett., Vol. 60, pp. 371-373,1992.
[9] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., Vol. 51, pp. 33-35, 1987.
[10] V. N. Bessolov and M. V. Lebedev, “Chalcogenide passivation of III–V semiconductor surfaces,” Semiconductors, Vol.32, No.11 pp.1141, 1998
[11] P. S. Dutta, K. S. Sangunni, H. L. Bhat, and Vikram Kumar, “Sulphur passivation of gallium antimonide surfaces,” Appl. Phys. Lett., Vol. 65, pp.1695-1697, 1994
[12] 林祐仲, “經表面處理氮化鎵之特性研究” 國立中央大學光電科學研究所博士論文,中華民國九十年六月
[13] J. Massies, J. Chaplart, M. Laviron, and N. T. Linh, “Monocrystalline aluminium ohmic contact to n-GaAs by H2S adsorption,” Appl. Phys. Lett.Vol.38, pp.693, 1981.
[14] Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, ”A model to explain the effective passivation of the GaAs by (NH4)2Sx Treatment,” Japanese Journal of Applied Physics, Vol.27, L2367, 1988.
[15] Takemasa Fumio,”Ammonium sulfide passivation for AlGaAs/GaAs BH laser fabrication process,” Japanese Journal of Applied Physics, Vol.30, No.3, pp.499, March 1991 .
[16] 郭玟婷, “以X射線光電子能譜探測氮化物半導體微觀結構” 國立中山大學光電工程研究所碩士論文,中華民國九十二年六月
[17] Keizo Takemasa, Munechika Kubota, Tsutomu Munakata, and Hiroshi Wada, “1.3 mm AlGaInAs Buried-Heterostructure Lasers,” IEEE Photonics Technology Letters, Vol. 11, No. 8, pp.949, August 1999
[18] R. Draid, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., Vol. 73, pp. 665-667, 1998.
[19] J. Fan, Y. Kurata, and Y. Nannichi, Jpn.”Marked reduction of the surface/interface states of GaAs by (NH4)2Sx Treatment,” J. Appl. Phys. 28, L2255, 1989.
[20] H. Kunzel, N. Grote, P. Albrecht, J. Bottcher, C. Bornholdt, “High Resistivity, Low Loss InGaAlAs/InP Optical Waveguide Grown By Low-Temperature MBE,” Electronics Letters, Vol. 28, Iss.9, pp. 844-846, 1992.
[21] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版 2003年6月
[22] Grant R. Fowles, Introduction to Modern Optics, Holt, Rinehart and Winston, Inc., 1975.
[23] N. Chand, J. E. Johnson, W. C. Liang, L. C. Feldman, W. T. Tsang,
H. W. Krautter, M. Passlack, R. Hull, J. W. Osenbach, and V. Swaminathan, “Molecular beam deposition of high quality silicon dielectric films,” J. Cryst. Growth Vol.148, pp.336, 1995.
[24] 橢圓儀教育訓練手冊 里華科技
[25] 林宏勳, “高電阻率半導體磊晶層及氧化矽抗反射膜之成長” 國立中山大學光電工程研究所碩士論文,中華民國九十二年六月
[26] Pallab Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. pp. 273-276, Prentice Hall International Editions, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.171.235
論文開放下載的時間是 校外不公開

Your IP address is 18.191.171.235
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code