Responsive image
博碩士論文 etd-0709107-121743 詳細資訊
Title page for etd-0709107-121743
論文名稱
Title
半導體光放大器、Fabry-Perot雷射及環形共振腔濾波器之研究暨量測
Fabrication and Measurement of Semiconductor Optical Amplifiers、Fabry-Perot Laser and Ring Cavity Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-27
繳交日期
Date of Submission
2007-07-09
關鍵字
Keywords
環形共振腔濾波器、半導體光放大器
Ring Cavity Filter, Semiconductor Optical Amplifiers
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
在本篇論文中,主要是建立自動化光電量測系統,研究半導體光放大器、Fabry-Perot雷射、及環形共振腔濾波器的工作特性。在光放大器及雷射的材料方面,我們使用磷化銦 (InP)為基底並在主動層加入調變摻雜結構技術的多重量子井結構磊晶片,成功的製作出半導體光放大器及 Fabry-Perot雷射。環形共振腔濾波器使用基板為1.41 μm對稱型結構之砷化鋁鎵銦 (InGaAlAs)的多重量子井結構磊晶片,設計其工作波長位在 1.55 μm。在架設量測系統方面,將各種量測系統皆和電腦完整的連接,並控制其自動化,以達更準確的量測結果。
  光放大器/雷射的設計包含標準的 Fabry-Perot式放大器 (Fabry-Perot Amplifier, FPA)及傾斜7度角的行波式放大器 (Traveling-Wave Amplifier, TWA),以比較其中的差別特性。在雷射方面量測發現 InGaAlAs-FPA結構隨電流增加,依續產生三個峰值 ( 1514 nm、1528 nm、1544 nm)。這可能是由於磊晶片材料設計當中,某些能帶的躍遷;而 InGaAlAs-TWA-a結構只有 波長 1510 nm的峰值產生。可能因設計傾斜角度後,使得波導中的散射損失增大,所以只有高能階的躍遷產生。在光放大器方面,InGaAsP-TWA-b結構在波長 1575 nm,電流 22 mA時可得最大 gross gain為 8.5 dB。我們也利用 Hakki-Paoli method來求得元件的增益頻譜,並經由透明電流的量測,得知材料的增益。
  在環形共振腔濾波器部份,雙環串接之雙環濾波器,經量測在Throughport端可得 FSR = 41.25GHz之光譜傳輸圖。
Abstract
In this thesis, we have established an optical measurement system to measure the device characteristics. We focus on the investigation of semiconductor optical amplifier, Fabry-Perot laser, and ring cavity filter. We used InP-based multiple quantum wells epitaxial wafer with modulation doping in the active layer. A 1.41 μm symmetric InGaAlAs/InP quantum well structure is used to fabricate the optical waveguide ring resonator devices for the optical communication region at 1.55μm wavelength.
For the semiconductor optical amplifier and lasers, we designed two different types: Fabry-Perot Amplifier (FPA), and Traveling Wave Amplifier (TWA). The InGaAlAs-FPA structure has three lasing peaks at 1514 nm, 1528 nm, and 1544 nm. The InGaAlAs-TWA-a structure has only one peak at 1510 nm. The InGaAsP-TWA-b structure has a gross gain = 8.5 dB (wavelength = 1575 nm) at pumping current = 22 mA. We used Hakki-Paoli method and transparency current to calculate gain spectrum. For ring cavity filter, the optical spectrum has a FSR = 41.25 GHz.
目次 Table of Contents
第一章 簡介………………………………………………………1
1-1 前言…………………………………………………………1
1-2半導體光放大器……………......................................................2
1-3環型共振腔濾波器…………………………………...………...4
1-4 論文架構……………………………………………………….4
第二章 元件基本原理……………………...…………….…….…5
2-1 半導體光放大器….…………………………….………….…5
2-1-1半導體光放大器工作原理………………………..……….…5
2-1-2光放大器的增益……………………….....………….….…....6
2-1-3 增益飽和……………………..............................................…8
2-1-4 光放大器雜訊(Noise)……………………………………..…9
2-1-5 調變摻雜……………………………………………………12
2-2 環型濾波器簡介……………………………………….……15
第三章 元件設計介紹………………….………………......…18
3-1 前言………..............…………………………………….…..18
3-2 環形共振腔濾波器元件....…………………….…………....18
3-3 半導體光放大器元件....…………………….………….......21
第四章 量測系統之架設…………………………….…...……..22
4-1 前言………………………………………………………….22
4-2 量測系統介紹及驗證……………………………………….22
4-3 耦合機制……………….……………………………………26
4-4 量測系統架構之輸入與輸出耦合………………………….26
4-5 Hakki-Paoli method量測方法介紹…...…………………….28
4-6 透明電流量測介紹……….....………………………...…….29
第五章 元件量測與討論…………………….………….…...…31
5-1 半導體放大器元件特性量測結果………………………….31
5-1-1 MBE磊晶片結構…………………………...……...……. 31
5-1-2 MOCVD磊晶片結……………………………………….41
5-2 環形共振腔濾波器元件特性量測結果…………….………50
第六章 結論…………………………………….…...………52
參考文獻………………………………………………………53
參考文獻 References
[1] Kazuhiro Oda, Norio Takato, and Hiromu Toba, ”A Wide-FSR Waveguide Double-Ring Resonator Optical FDM Transmission System,” IEEE J. Lightwave Technology, Vol. 9, No. 6, pp. 728-736, April (1991).
[2] B. W. Hakki, and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” Appl. Phys. Lett. Vol. 46, No. 3, pp. 1299-1306, (1975).
[3] R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, ”Compact InP-Based RingLasers Employing Multimode Interference Couplers and Combiners,” Appl. Phys. Lett. Vol. 64, Issue 14, pp. 1753-1755, (1994).
[4] 葉東昆, ”1.55μm寬頻半導體光放大器研製與分析”, 國立中山大學光電工程研究所,2004年6月。
[5] W.W. Chow, R.R. CRAIG, ”Amplified Spontaneous Emission Effects in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electronics, Vol. 26, No. 8, Aug, (1990).
[6] B. Soldano, C. M. Penning, ”Optical Multi-mode Interference Devices Based onself-Imaging Principle and Applications,” IEEE J. Lightwave Technology, Vol. 13, No. 4, pp. 615-627, (1995).
[7] J. Goodwin, B .Garside, ”Measurement of Spontaneous Emission Factor for Injection Lasers,” IEEE J. Quantum Electronics, Vol. 18, No. 8, (1982).
[8] M. J. O’Mahony, ”Semiconductor laser optical amplifiers for use in future fibersystems,” IEEE J. Lightwave Technology, Vol. 6, No. 4, pp. 531-543, April (1988).
[9] T.Saitoh and T. Mukai, ”1.5 μm GaInAsP traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron., Vol. QE-23, No. 6, pp. 1010-1019, June (1987).
[10] M. Bachmann, P. A. Besse, and H. elchior, ”Overlapping-image multimodeinterference coupler with a reduced number of self-images for uniform and nonuniform power splitting,” Applied Optics, Vol. 34, No. 30, pp. 6898-6910, (1995).
[11] 陳政德, “Fabrication and Measurement of Semiconductor Optical Amplifiers and Ring Lasers,” 國立中山大學光電所,2006年6月。
[12] J. Vahala, C. E. Zah, ”Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. Vol. 52 , No. 6, (1988).
[13] Kazuhisa Uomi, ”Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory,” Appl. Phys. Lett. Vol. 29, No. 1, pp. 91-87, (1990).
[14] G.E. Shtengel and D.A. Ackerman, ”Internal optical loss measurement in 1.3 um InGaAsP Lasers,” Eleteronics letters, Vol. 31, No. 14, (1955)
[15] T. Mukai, Y. Yamamoto, and T. Kimura, “Optical Amplification by Semiconductor Lasers,” in Semiconductors and Semimetals, Vol. 22, Part E, chapter 3, New York (1985).
[16] T. Keating, S. H. Park, J. Minch, X. Jin, and S. L. Chuang, ”Optical gain measurements based on fundamental properties and comparison with many-body theory,” Appl. Phys. Lett. Vol. 86, No. 6, (1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.72.200
論文開放下載的時間是 校外不公開

Your IP address is 3.139.72.200
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code