Responsive image
博碩士論文 etd-0709107-172217 詳細資訊
Title page for etd-0709107-172217
論文名稱
Title
雙閘極非晶矽薄膜電晶體之電性分析與物理機制探討
Electrical Analysis and Physics Mechanism of Dual-gate Amorphous Silicon Thin Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-09
關鍵字
Keywords
雙閘極非晶矽薄膜電晶體
Dual-gate Amorphous Silicon Thin Film Transistor
統計
Statistics
本論文已被瀏覽 5668 次,被下載 26
The thesis/dissertation has been browsed 5668 times, has been downloaded 26 times.
中文摘要
由於傳統的陰極射線管顯示器(CRT)已經被液晶平面顯示器所替代,隨著平面顯示器的尺寸增大,身為開關元件的非晶矽薄膜電晶體的性能、品質上的要求也越來越高。
在本論文中,我們改良了傳統的雙閘極電晶體構造,製造出利用銦錫氧化物(ITO)做為背閘極的非對稱雙閘極電晶體結構。我們定義做為背閘極的ITO電極只覆蓋於汲極端的上方,且由汲極端覆蓋到傳導通道的一半。這個新式元件保留了雙閘極電晶體的優點,其元件的性能各方面都比傳統的電晶體優越。不僅擁有較高的導通電流,而且在照光下也具有較低的光漏電流。
另外,我們利用非對稱雙閘極電晶體的結構來探討寄生電容的問題。藉由C-V量測方法去驗證這個新結構也降低了雙閘極電晶體的回踢電壓過大的問題。除此之外,由於結構的非對稱性,我們也探討了源極與汲極互換後會對元件的電性造成不同的影響。最後,我們利用stress模式去探討元件的可靠度機制。可以得知,這個新式元件的劣化速度在長時間操作下會和傳統結構差不多。
Abstract
The traditional displayer – CRT has already been substituted by liquid crystal displayer (LCD).The a-Si TFT is used to be a switch, while the size of the displayer increases, the require of the performance and quality of TFTs is more and more better. Therefore, it is very important subject to study the stability and to improve the performance of a-Si TFTs.
In this thesis, we fabricate another new structure (asymmetry dual-gate TFTs).For asymmetry dual-gate TFTs, the ITO back gate is extended to the middle of the channel and only covered on the drain contact. The new structure has the advantages of dual-gate TFTs. With dual-channel conduction, it exhibit higher Ion and lower photo leakage current performance than the conventional inverted staggered TFTs.
In addition, we use the asymmetry dual-gate structure to investigate how the parasitic capacitance influences the feed-through voltage by C-V measurement. We also to investigate the influences of electrical characteristics with the ITO back gate whether or not overlap the source contact. The asymmetry in on current with source-drain swapping can be attributed to the difference in the ITO back gate whether overlaps the source contact. Finally, it simulated the process of the degradation on the TFTs to find the stability mechanism of the TFTs.
目次 Table of Contents
Contents

ABSTRACT(CHINESE) I
ABSTRACT II
ACKNOWLEDGEMENT(CHINESE) III
CONTENTS IV
FIGURE CAPTIONS VI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND OF A-SI:H TFTS 4
2.1 HYDROGENATED AMORPHOUS SILICON 4
2.2 ATOMIC STRUCTURE AND THE ELECTRON DENSITY OF STATES 4
2.3 PHOTO LEAKAGE CURRENT MECHANISM 7
2.4 CAPACITANCE-VOLTAGE CHARACTERISTICS OF A-SI:H TFTS 10
2.5 BIAS INDUCED METASTABILITY 11
2.5.1 Charge trapping 11
2.5.2 Defect state creation 12
CHAPTER 3 FABRICATION AND CHARACTERIZATION 14
3.1 DEVICE STRUCTURE AND FABRICATION 14
3.2 APPARATUS 15
3.3 SET UP INSTRUMENTS FOR I-V AND C-V MEASUREMENT 16
3.4 METHOD OF DEVICE PARAMETER EXTRACTION 17
3.4.1 Determination of the threshold voltage 17
3.4.2 Determination of the subthreshold swing 17
3.4.3 Determination of the field-effect mobility 18
3.4.4 Determination of on/off current ratio 18
CHAPTER 4 RESULTS AND DISCUSSIONS 20
4.1 DUAL-GATE A-SI:H TFTS ELECTRICAL PERFORMANCE 20
4.1.1 I-V characteristics 20
4.1.2 C-V characteristics 21
4.2 ASYMMETRY DUAL-GATE A-SI:H TFTS ELECTRICAL PERFORMANCE 23
4.2.1 C-V characteristics 23
4.2.2 I-V characteristics 24
4.2.3 Forward mode and reverse mode 25
4.3 THE RELIABILITY OF DC STRESS 26
CHAPTER 5 CONCLUSIONS 27
REFERENCE 28
FIGURES 31
參考文獻 References
[1] K. S. Karim, A. Nathan, J. A. Rowlands, and S. O. Kasap, “X-ray detector with on-pixel amplification for large area diagnostic medical image, “ IEE Proc. Circuits, Devices and Systems, vol. 150. no. 4, pp. 267-273, Aug 2003.
[2] T.L. Credelle, “ Thin film transistor for video applications, “ in conf. Res. Int. Display Research Conf., pp. 208-214, 1988
[3] C van Berkel and M. J. Powell, “Photo-field effect in amorphous silicon thin film transistors, “J. Appl. Phys., vol. 60, pp.1521-1527, 1986
[4] C. van Berkel and M. J. Powell, “ The Photosensitivity of Amorphous Silicon Thin Film Transistors,” Journal of Non-Crystalline Solids, vol 77-78, pp 1393-1396, Dec. 1985.
[5] Peyman Servati, Arokia Nathan, “Modeling of the reverse characteristics of a-Si TFTs,” IEEE Trans. Elec. Devices., vol. 49, pp.812-819, May. 2002.
[6] H.C. Tuan, M. J. Thompson, N. M. Johnson, and R. A. Lujan, “Dual-gate a-Si:H thin film transistors,” IEEE Electron Device Lett., vol. 3, no. 12, pp. 357-359. 1982
[7] Y. Kuo, “Non-Photosensitive, Vertically redundant thin film transistor,” J. Electrochem. Soc., 143(4), pp. 1469, 1996
[8] Y. Matsueda et al., “New technologies for compact TFT LCDs with high-aperture ratio”, SID 90 Dig., 1990, pp.315-318.
[9] T. Yanagisawa et al., “Compensation of the display electrode voltage distortion”, in Proc. 6th Int. Display Res. Conf., Japan, 1986, pp. 192-195.
[10] A. Sasaki and T. Uchida, “Active addressing for flat panel display”, in Proc. 6th Int. Display Res. Conf., Japan, 1986, pp. 62-67.
[11] K. Khakzar and E. Lueder, “Analysis of a-Si:H TFT LCDs using new TFT and LC SPICE models”, in Proc. 11th Int. Display Res. Con., 1991, pp. 308-311.
[12] B. G. Streetman, Solid State Electronic Devices, Chapter 1.3, London: Prentice
Hall, 1990
[13] M. J. Powell, “ The Physics of Amorphous-silicon Thin-film Transistors, ” IEEE
Trans. Electron. Devices, 36, 2753 (1989).
[14] Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M
University, U.S.A. 2004.
[15] W. H. Zachariasen, “The Atomic Arrangement in Glass, ” J. Am. Chem. Soc., 54,
3841 (1932).
[16] F. Urbach, “The Long-wavelength Edge of Photographic Sensitivity and of the
Electronic Absorption of Solids, ” Phys. Rev., 92, 1324 (1953).
[17] W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous
Silicon, ” Solid State Comm., 17, 1193 (1975).
[18] Sandrine Martin, “Analysis of the amorphous silicon thin film transistors behavior under illumination.”
[19] D. K. Schroder, “Semiconductor Material and Device Characterization (Wiley, New York, 1990).”
[20] J. S. Choi and G. W. Neudeck, IEEE Trans. Electron Device 39, 2515 (1992); J. S. Choi, G. W. Neudeck, and S. Luan, Surf. Sci. Spectra 36, 223 (1993).
[21] M. Shur, M. Hack, J. G. Shaw, and R. A. Martin, J. Appl. Phys. 66, 3381 (1989).
[22] S.-S. Chen and J. B. Kuo, IEEE Trans. Electron Devices 41, 1169 (1994).
[23] Hyuk-Ryeol Park, Daewon Kwon, and J. David Cohen, “Electrode interdependence and hole capacitance in capacitance–voltage characteristics of hydrogenated amorphous silicon thin-film transistor”, J. Appl. Phys., vol. 83, number 12, 15 June 1998.
[24] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors,” Appl. Phys. Lett., vol. 43, no. 6, pp. 597-599, 1983.
[25] W. B. Jackson and M. D. Moyer, “Creation of near-interface defects in hydrogenated amorphous silicon-silicon nitride heterojunctions: the role of hydrogen,” Phys. Rev. B, vol. 36, pp. 6217-6220, 1987.
[26] F. R. Libsch and J. Kanicki, “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 62, no. 11, pp. 1286-1288, 1993.
[27] M. Stutzmann, “Weak bond-dangling bond conversion in amorphous silicon,” Phil. Mag. B, vol. 56, no. 1, pp. 63-70, 1987.
[28] Z. E. Smith and S. Wagner, “Band tails, entropy, and equilibrium defects in hydrogenated amorphous silicon,” Phys. Rev. Lett., vol. 59, no. 6, pp. 688-691, 1987.
[29] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, and W. I. Milne, “Defect pool in amorphous-silicon thin-film transistors,” Phys. Rev. B, vol. 45, no. 8, pp. 4160-4170, 1992.
[30] A. Nathan, P. Servati, K. S. Karim, D. Striakhilev, and A. Sazonov, "Device Physics, compact modeling, and Circuit Applications of a-Si:H TFTs," in Thin Film Transistors: Materials and Processes Volume 1: a-Si:H Thin Film Transistors, Ed.: Y. Kuo, Kluwer Academic Publishers, pp. 98-198, 2003.
[31] C. van Berkel and M. J. Powell, “Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors,” Appl. Phys. Lett., vol. 51, no. 14, pp. 1094-1096, 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.41.187
論文開放下載的時間是 校外不公開

Your IP address is 3.141.41.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code