Responsive image
博碩士論文 etd-0709109-191710 詳細資訊
Title page for etd-0709109-191710
論文名稱
Title
飽和吸收體摻雜奈米碳管被動鎖模雷射之研究
Passively Mode-Locked Lasers Using Saturable Absorber Incorporating Dispersed Single-Wall Carbon Nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-08
繳交日期
Date of Submission
2009-07-09
關鍵字
Keywords
飽和吸收體、被動鎖模、奈米碳管、鎖模雷射、鎖模
passively mode-locked, mode-locking, saturable absorber
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本論文主要研究單壁奈米碳管(SWCNT SA)飽和吸收體(SWCNT SA)在不同單壁奈米碳管濃度和薄膜厚度下對所表現出的被動鎖模雷射脈衝寬度影響。挑選適當內徑之單壁奈米碳管,使其在光通訊1550nm波長有非線性吸收特性,及可在摻鉺光纖之工作波段,將單壁奈米碳管製成複合材料薄膜飽和吸收體,並在掺鉺光纖雷射架構下探討奈米碳管飽和吸收體之被動鎖模雷射特性。首先利用界面活性劑(SDBS)分散單壁奈米碳管,接著將經過分散之單壁奈米碳管製成SWCNT SA薄膜,量測其厚度和光學吸收特性,最後置入掺鉺光纖被動鎖模雷射架構中量測不同厚度和碳管摻雜濃度下的鎖模雷射脈衝寬度。實驗結果顯示,當SWCNT SA厚度固定為8um時,高濃度之SWCNT SA鎖模後的脈衝波形會更接近反雙曲線,其脈衝的軌跡會比較穩定,當碳管濃度在0.05 wt%有最佳輸出脈衝寬度(FWHM) 2.02 ps。在不同厚度之SWCNT SA的脈衝寬度趨勢方面,當碳管濃度固定為0.0125 wt%時,將厚度提升至100 um以上可大幅提升其鎖模狀態穩定性並縮短脈衝寬度至1.88 ps。因此控制SWCNT SA之濃度及薄膜厚度可以使鎖模雷射達到穩定的脈衝波形和最佳脈衝寬度,進而使得SWCNT SA達到製程簡單、低成本且高效能之目的。
Abstract
The dependence of single-wall carbon nanotubes-based saturable absorber (SWCNTs SA) on concentration and thickness for mode-locked laser pulse formation is comprehensively investigated. The peak absorption wavelength of SWCNTs SA is engineered within the gain band-width of erbium-doped fiber centered near 1550 nm. The optima full-width half-maximum (FWHM) of pulses was obtained as the concentrations of SWCNTs SA was 0.05 wt%. This indicates that the laser pulse become shorter as the concentration of SWCNTs SA increases. The result also showed that the FWHM of pulses from 3.43 to 1.85 ps were found as the thickness of SWCNTs SA increased from 8 to 100 um. This also indicates that the laser pulse become shorter as the thickness of SWCNTs SA increases. However, the pulse width significantly broadened as concentration increased to 0.1 wt% and became stable as thickness of SWCNTs SA increased from 100 to 264 um for passively mode-locked lasers. An in-depth study on the optimum fabrication of concentration and thickness of SWCNTs SA for laser pulse formation may allow developing a cost-effective mode-locked laser with high performance as well as broadly benefit to the utilization of many other low-cost nanodevices.
目次 Table of Contents
內容目錄
中文摘要 I
英文摘要 II
致 謝 III
內容目錄 IV
圖表目錄 VII
第一章 導論論…………………………………… 1
1.1 研究目的…………………………………… 1
1.2 論文架構…………………………………… 3

第二章 鎖模雷射的動作機制及原理 …………… 4
2.1 模態鎖定原理 ………………………………4
2.2 模態鎖定之方法…………………………… 7
2.2.1 主動式鎖模…………………………… 9
2.2.2 被動式鎖模…………………………… 11
2.3 飽和吸收體介紹………………………… 13
2.3.1 半導體飽和吸收鏡…………………… 13
2.3.2 克爾透鏡……………………………… 15
2.3.3 單壁奈米碳管掺雜飽和吸收體……… 16
2.4 飽和吸收體之非線性吸收特性……………19

第三章 單壁奈米碳管飽和吸收體製程………… 23
3.1 奈米碳管簡介…………………………… 24
3.2 奈米碳管之結構與半導體特性…………… 25
3.3 飽和吸收體內單壁奈米碳管之分散…… 32
3.3.1 奈米碳管叢聚現象……………………32
3.3.2 界面活性劑分散機制…………………34
3.3.3 飽和吸收體分散性量測………………36
3.4 單壁奈米碳管飽和吸收體之成膜…………40
3.5 單壁奈米碳管飽和吸收體特性量測………43
3.5.1 飽和吸收體吸收度量測……………… 43
3.5.2 飽和吸收體厚度量測………………… 45

第四章 被動鎖模雷射架構與量測……………… 49
4.1 環形雷射架構與組成元件特性……………49
4.2 實驗及量測結果……………………………54
4.2.1 起始鎖模功率量測…………………… 54
4.2.2光譜及脈衝寬度量測………………… 56
4.2.3 光譜與脈衝寬度趨勢分析…………… 61

第五章 結論………….…………………………… 64
5.1 結論…………………………………………64
5.2 未來方向……………………………………65
參考文獻………………………………………… 66
參考文獻 References
[1] I.N.Duling, “Compact sources for ultrashort pulses,” Combringe, Combringe University Press (1995).
[2] M.E. Fermann, “Ultrafast fiber oscillators,” M.E. Fermann, ed., Chap3(2003) .
[3] N.J. Doran, and D. Wood, “Non-linear optical loop mirror,” Optics Letters, 14, 56-58 (1988).
[4] E.A. De Souza, C.E. Soccolich, W. Pleibel, R.H. Stolen, J.R. Simpson, and D.J. DiGiovanni, “Saturable absorber modelocked polarization maintaining erbium-doped fiber laser,” Electron. Lett. 17, 447-449 (1993).
[5] U.Keller,“Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Optics Letters, 15 ,346-351 (1990) .
[6] U. Keller, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron, 2, 435–453 (1996).
[7] H. Kataura , “Diameter control of single-walled carbon nanotubes,”Carbon, vol. 38, pp. 1691–1697, (2000).
[8] M. E. Itkis, “Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes,” Nano Letters, 2, 155-159 ,(2002).
[9] A. Ugawa, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B, 60, R11305 - R11308 (1999).
[10] 林螢光,”光電子學-原理、元件與應用,”全華科技圖書.
[11] Franz X. Kaertner, “Mode-locked Laser Theory”, (2006)
[12] N. Onodera et. al.,"Frequency multiplication in actively mode locked semiconductor lasers", Appl. Phys. Lett., 62(12), 1329 (1993).

[13] Geisler T, Shore KA, Soerensen MP, Christlansen PL, Mork J, Mark J,"Nonlinear fiber external-cavity mode-locking of Er-doped fiber laser", JOSA B, 10(7), 1766 (1993) .
[14] Chang CW, Chi S,"Mode-locked erbium-doped fibre ring laser using nonlinear polarization rotation", J MOD OPTIC, 45(2), 355 (1998)
[15] DJ. Jones, HA. Haus, LE. Nelson,EP. Ippen,"Stretched-Pulse Generation and Propagation", IEICE Trans. Electron., E81-C 2, 180 (1998)
[16] HA. Haus"Theory of mode locking with a slow saturable absorber", IEEE J. QE-11, 736 (1976)
[17] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall nanotubes in aqueous surfactant solution, Carbon 45 618-623. (2007)
[18] http://www.rp-photonics.com/semiconductor saturable absorber mirrors.html
[19] 蒙宏堯,“飽和吸收體被動鎖模光纖雷射之研製”, 國立交通大學碩士論文, (2000).
[20] 朱旭新等, “十兆瓦超短脈衝雷射系統”, 科儀新知128 期5-18 頁, (2002).
[21] HA. Haus"Theory of mode locking with a fast saturable absorber", Journal of Appl. Phys. 46(7), 3049 (1975)
[22] M.W. Phillips, A.I. Ferquson, D.C. Hanna: Opt. Lett. 14, 219 (1989)
[23] 成會明, “奈米碳管”, 五南, (2004).
[24] R. Saito, G. ”Dresselhaus, and MS Dresselhaus. ”, Physical
Review B, 61, 2981(2000).
[25] 張家銘, “多層壁奈米碳管複合材料電磁屏蔽之研究”, 國立中山大學博士論文, (2008).
[26] M. S. Dresselhaus, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Advances in Physics, 49, 705-814 (2000)
carbonnanotubes,”Synth. Met., vol. 103, pp. 2555–2558, (1999).
[27] 洪文祺, “新型編織碳纖維複合材料電磁屏蔽效應之研究”, 國立中山大學碩士論文, (2001).
[28] Claude Rulliere, “Femtosecond Laser Pulses”
[29] S. lijima , “Helical Microtubeles of Graphitic carbon” , Nature, Vol. 354, pp. 56, (1991).
[30] Gerd Keiser, “Optical Fiber Communications”
[31] http://www.nanolab.ucla.edu/index.htm
[32] H. Kataura, “Optical properties of single-wall
[33] Michael J. O’Connell, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science, 297, 593-596 (2002).
[34] http://en.wikipedia.org/wiki/Image:Benzene-orbitals2.png
[35] Islam M, “High weight fraction surfactant solubilization of
single-wall carbon nanotubes in water,” Nano Lett, 3, 269–73(2003).
[36]Takanori Fukushima, Atsuko Kosaka, Yoji Ishimura,Takashi Yamamoto, Toshikazu Takigawa, Noriyuki Ishii,Takuzo Aida1, “Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes”, Science, Vol 300, pp.2072-2074, (2003).
[37] 林哲葳, “離子液體分散奈米碳管之塑膠複合材料電磁屏蔽效應”, 國立中山大學碩士論文, (2008).
[38] http://www.shodex.com/english/dc080328.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.135.224
論文開放下載的時間是 校外不公開

Your IP address is 18.191.135.224
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code