Responsive image
博碩士論文 etd-0709111-234005 詳細資訊
Title page for etd-0709111-234005
論文名稱
Title
環境污染物之萃取、濃縮與檢測:(1)銀奈米粒子;(2)汞離子
Extraction, concentration and detection of metallic pollutants in environmental samples: (1) silver nanoparticles; (2) mercury ion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-07-09
關鍵字
Keywords
金奈米粒子、銀奈米粒子、雲點萃取法、汞離子、比色法
silver nanoparticles, SYBR Green I, thymine, colorimetric, PolyT, cloud point extraction, mercury ion, gold nanoparticles, Tween-20
統計
Statistics
本論文已被瀏覽 5634 次,被下載 1921
The thesis/dissertation has been browsed 5634 times, has been downloaded 1921 times.
中文摘要
本篇論文透過雲點萃取法結合修飾 Tween-20 的金奈米粒子檢測環境樣品中的
銀奈米粒子,以及利用表面修飾DNA 的銀奈米粒子進行萃取及偵測水樣中的汞離
子。
一、 以雲點萃取法結合修飾Tween-20 界面活性劑之檸檬酸鈉金奈米粒子
作為比色法感測器檢測環境水樣中銀奈米粒子:
在本篇研究中,開發簡單、靈敏以及具有選擇性的銀奈米粒子檢測方式:透
過雲點萃取法 (Cloud Point Extraction, CPE) 萃取及預濃縮銀奈米粒子(Silver
Nanoparticles, AgNPs),再藉由Tween-20 界面活性劑修飾的金奈米粒子
(Tween-20-AuNPs)進行比色法檢測。本實驗使用Triton X-114 作為雲點萃取法
的萃取試劑。當界面活性劑加熱至雲點溫度 (Cloud Point Temperature) 以及超過臨
界微胞濃度時(Critical micelles concentration, CMC)時,Triton X-114 會再水溶液
中形成微胞,造成與水不互溶,產生相分離之現象。而AgNPs 會因為疏水性的作
用進入微胞,由相分離的作用之後,使AgNPs 從水相中萃取出來進入富含界面活
性劑的微胞相中。透過CPE 分別將溶液中不同粒徑大小及不同表面修飾劑的Ag
NPs 萃取之後,利用H2O2 在酸性環境中進行氧化形成銀離子,隨後加入表面修飾
上Tween 20-AuNPs,使銀離子能還原在Au NPs 上並將Tween-20 脫出AuNPs 表
面,造成AuNPs 在高鹽類環境下形成聚集而導致其特徵吸收峰有紅位移之現象,
再藉由UV/Vis 吸收儀進行分析。由於Tween-20 Au NPs 可在高鹽類的環境下進行
偵測, 將AgNPs 應用在飲用水、自來水及海水的環境檢測中,並且對其他金屬材
料的奈米粒子具有良好的選擇性。藉由本次的偵測方式,在7 、22 及54 nm AgNPs
的條件中,奈米粒子濃度的偵測線性範圍從1 - 25 ng/mL、 0.4 - 1.1 μg/mL 以及0.6
- 5.2 μg/mL。
ii
關鍵詞:銀奈米粒子、雲點萃取法、金奈米粒子、比色法、Tween-20
二、 功能性銀奈米粒子萃取及檢測水樣中汞離子:
在第二篇研究當中,利用修飾聚合胸腺嘧啶寡核苷酸 (Polythymine
oligonucleotide, PolyT) 的銀奈米粒子進行萃取,並藉由SYBR Green I (SG) 做為螢
光試劑檢測水中的汞離子。根據先前文獻提出PolyT 可選擇性抓取溶液中的汞離
子,由於PolyT 與汞離子有相當強的配位能力而形成T-Hg2+-T 的形式,使得原本
為單股的PolyT 形成髮夾彎形狀的DNA 結構。此外,與Hg2+結合後的PolyT 之三
度空間結構中有許多凹槽,當SG 填入DNA 結構的凹槽後,螢光試劑的螢光效率
比起吸附在單股DNA 上的螢光效率來的強,可作為偵測DNA 結構變化的螢光試
劑。使用5’端具有硫醇基的PolyT 與銀以銀硫鍵的方式修飾在AgNPs 上,藉由PolyT
抓取水溶液中的汞離子,再將AgNPs 離心收集後加入H2O2 進行氧化。當AgNPs
消化後,原本表面上形成T-Hg2+-T 的髮夾型PolyT 將被釋放出來。將前述溶液與
適當的緩衝溶液及SG 混合後即可進行螢光偵測。本實驗目測到汞離子最低濃度為
10 pM,並且針對汞離子有良好的選擇性。本篇亦可應用於飲用水與自來水中的汞
離子檢測。在飲用水及自來水的條件中,Hg2+濃度的偵測線性範圍從50 -600 pM
以及100 – 700 pM。
關鍵詞:銀奈米粒子、汞離子、PolyT、SYBR Green I、thymine
Abstract
I. Combined cloud point extraction and Tween 20-stabilized gold
nanoparticles for colorimetric assay of silver nanoparticles in
environmental water
This study investigated a simple, sensitive and selective method for the colorimetric
assay of silver nanoparticles (AgNPs) using Triton X-114-based cloud point extraction
(CPE) as a preconcentration step and Tween 20-stabilized gold nanoparticles
(Tween-AuNPs) as a colorimetric probe. After heating beyond the cloud point
temperature of Triton X-114, a solution containing Triton X-114 micelles and AgNPs
separated into a surfactant-rich phase (small volume) and a dilute aqueous phase.
AgNPs partitioned into a Triton X-114-rich phase through a hydrophobic interaction
between Triton X-114 micelles and AgNPs. After phase separation, the concentrated
AgNPs oxidized to form Ag+ upon adding H2O2. The generated Ag+ triggered the
aggregation of Tween 20-AuNPs in a high-ionic-strength solution because the reduction
of Ag+ on the AuNP surface enabled Tween 20 (stabilizer) to be removed from the NP
surface. The efficiency of Triton X-114-based CPE of the AgNPs was found to be
iv
insensitive to their size and coating type. Under optimal extraction and detection
conditions, the selectivity of this method for AgNPs was considerably higher than for
other nanomaterials. The minimum detectable concentrations for 7, 22, and 54 nm
AgNPs were measured to be 0.1, 420, and 600 ng/mL, respectively. This method was
successfully applied to the analysis of 7 nm AgNPs in drinking water, tap water and
seawater.
Keyword: silver nanoparticles, gold nanoparticles, cloud point extraction, Tween-20,
colorimetric assay
II. Functionalized silver nanoparticles as an extracting and preconcentrating
agent for detection of mercury ions
In this research we provided highly sensitive and selective for fluorescence assay of
combined polythymine oligonucleotide (PolyT) with silver nanoparticles (AgNPs) as an
extracting agent to detect mercury ion in environmental water. According to previous
researches, PolyT will form a hairpin structure in the presence of Hg2+, this structure
provide several 3-D grooves that the fluorescent dye can inlay with it. SYBR Green I
(SG) is a staining dye for DNA, when binding with single strand DNA, it shows low
fluorescence. On the contrast, SG inlay with grooves of hairpin structure, it shows
v
11-fold of fluorescence signal. Hence, we used SG as a fluorescence probe for Hg2+. We
modified thiol group at the 5’ of PolyT DNA, because of forming silver sulfur bond,
PolyT will able to modified on the surface of AgNPs. PolyT33SH-AgNPs are the
extracting and concentrating agent in Hg2+ solution, by the centrifugation, we collected
the PolyT33SH-AgNPs. For the purpose of releasing PolyT from AgNPs’ surface, we
adding H2O2 to oxidize the AgNPs into Ag+. By mixing buffer and SG into previous
solution, mercury ion could be detected. In this study, we successfully detecting Hg2+
in the aqueous solution contained drinking water and tap water. The detection limit in
drinking water is 20 pM, which is below Environmental Protection Agency limit for
Hg2+ in drinkable water (10 nM), the linear range is from 50-600 pM. On the other hand,
the detection limit in tap water is 50 pM, linear range is from 100-700 pM.
Keyword: silver nanoparticles, mercury ion, PolyT, SYBR Green I, thymine
目次 Table of Contents
摘要··············································································ⅰ
目錄··············································································ⅵ
圖目錄···········································································ⅷ
表目錄···········································································ⅹ
縮寫表············································································xi
第一章、 以雲點萃取法結合修飾Tween-20 界面活性劑之檸檬酸鈉金奈米粒子作
為比色法感測器檢測環境水樣中銀奈米粒子
壹、前言··········································································1
貳、實驗部分·····································································3
2.1、藥品與溶液配置·····························································3
2.2、儀器裝置···································································5
2.3、奈米粒子之合成····························································6
2.4、樣品配製···································································11
2.5、真實樣品之偵測····························································11
参、結果與討論··································································12
3.1、偵測機制之探討····························································12
3.2、探討銀奈米粒子粒徑大小與保護試劑影響之影響··························15
3.3、選擇性、靈敏度及其應用於真實水樣之探討·······························26
肆、結論·········································································40
伍、參考文獻·····································································41
vii
第二章、 功能性銀奈米粒子萃取及檢測水樣中汞離子
壹、前言··········································································45
貳、實驗部分·····································································47
2.1、藥品與溶液配置····························································47
2.2、儀器裝置···································································48
2.3、螢光顯微鏡偵測系統·······················································50
2.4、奈米粒子之合成···························································52
2.5、樣品製備··································································53
2.6、分析添加於真實水樣中的汞離子···········································53
参、結果與討論··································································55
3.1、偵測機制之探討····························································55
3.2、萃取與濃縮效果之探討····················································57
3.3、探討PolyT 長度、濃度及SYBR Green Ⅰ濃度之影響·······················59
3.4、探討PolyT33SH-AgNPs 濃度之影響········································65
3.5、PolyT33SH-AgNPs 對Hg2+之選擇性探討···································67
3.6、PolyT33SH-AgNPs 對Hg2+之靈敏度及再現性探討·························69
3.7、添加於真實水樣中Hg2+之檢測·············································73
肆、結論·········································································77
伍、參考文獻····································································78
參考文獻 References
1. Ray, P. C.; Yu, H.; Fu, P. P. "Toxicity and environmental risks of nanomaterials: challenges and future needs. " J. Environ. Sci. Health Pt. C-Environ. 2009, 27, 1-35.
2. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. "The bactericidal effect of silver nanoparticles." Nanotechnology 2005, 16, 2346-2353.
3. Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M. "Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of
Silver Ions." Chem. Mater. 2010, 22, 4548-4554.
4. Bar-Ilan, O.; Albrecht, R. M.; Fako, V. E.; Furgeson, D. Y. "Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos." Small 2009, 5,
1897-910.
5. Ratte, H. T., " Bioaccumulation and toxicity of silver compounds: A review. " Environ. Toxicol. Chem. 1999, 18, 89-108.
6. Quadros, M. E.; Marr, L. C. "Environmental and Human Health Risks of Aerosolized Silver Nanoparticles.".J Air. Waste. Manage. 2010, 60, 770-781.
7. Barriada, J.; Tappin, A.; Evans, E.; Achterberg, E., "Dissolved silver measurements in seawater." TrAC- Trends Anal. Chem. 2007, 26, 809-817.
8. Liu, J.; Sonshine, D. A.; Shervani, S.; Hurt, R. H., "Controlled release of biologically active silver from nanosilver surfaces." ACS nano 2010, 4, 6903-13.
9. Tiede, K.; Boxall, A. B. A.; Tiede, D.; Tear, S. P.; David, H.; Lewis, J., "A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS". J. Anal. At. Spectrom. 2009, 24, 964.
10. Greulich, C.; Diendorf, J.; Simon, T.; Eggeler, G.; Epple, M.; Koller, M.,"Uptake 42 and intracellular distribution of silver nanoparticles in human mesenchymal stem cells." Acta Biomater. 2011, 7 , 347-54.
11. Asharani, P. V.; Hande, M. P.; Valiyaveettil, S.,"Anti-proliferative activity of silver nanoparticles." BMC cell biology 2009, 10, 65.
12. Sur, I.; Cam, D.; Kahraman, M.; Baysal, A.; Culha, M.,"Interaction of multi-functional silver nanoparticles with living cells. " Nanotechnology 2010, 21 (17), 175104.
13. Liu, J. F.; Liu, R.; Yin, Y. G.; Jiang, G. B.,"Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase." Chem.Comm.2009, 1514-1516.
14. Liu, J. F.; Chao, J. B.; Liu, R.; Tan, Z. Q.; Yin, Y. Q.; Wu, Y.; Jiang, G. B.,"Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. " Anal Chem 2009, 81, 6496-6502.
15. Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H.,"Selective fluorogenic and chromogenic probe for detection of silver ions and
silver nanoparticles in aqueous media." J. Am .Chem. Soc. 2009, 131 (6), 2040-2041.
16. Lin, Y. H.; Tseng, W. L., Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe."Chem. Comm. 2009, 43, 6619-21.
17. Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L.,"Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold
nanoparticles."Anal. Chem. 2010, 82, 6830-6837.
18. Wei, H.; Chen, C. G.; Han, B. Y.; Wang, E. K.,"Enzyme colorimetric assay using unmodified silver nanoparticles."Anal. Chem. 2008,80, 7051-7055.
19. Kanjanawarut, R.; Su, X. D., "Colorimetric Detection of DNA Using 43 Unmodified Metallic Nanoparticles and Peptide Nucleic Acid Probes." Anal Chem
2009, 81 (15), 6122-6129.
20. Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W.,"Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction."J. Phys. Chem. B 2009, 113 ,
6573-6576.
21. Alvarez-Puebla, R. A.; Aroca, R. F., "Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman
scattering." Anal. Chem. 2009, 81, 2280-2285.
22. Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y.,"DNA aptamer folding on gold nanoparticles: from colloid
chemistry to biosensors." J. Am. Chem Soc. 2008, 130 , 3610-3618.
23. Yguerabide, J.; Yguerabide, E. E., "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological
applications." Anal.Biochem. 1998, 262 , 157-176.
24. Huang, C. C.; Tseng, W. L.,"Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles." Analyst 2009, 134, 1699-1705.
25. Yu, C. J.; Lin, C. Y.; Liu, C. H.; Cheng, T. L.; Tseng, W. L.,"Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric
sensing of glucose and selective extraction of thiol." Biosens. bioelectron. 2010, 26, 913-7.
26. Bigall, N. C.; Hartling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmuller, A., "Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties." Nano. lett. 2008, 8 , 4588-92.
27. Wang, Y.; Tang, Z. Y.; Correa-Duarte, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M.,"Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores." J. Phys. Chem. B. 2004, 108, 15461-15469.
28. Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A., "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals. " Chem. Mater.
2009, 12, 2676-2685.
29. Ojeda, C. B.; Rojas, F. S., "Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview." Anal. Bioanal. Chem.
2009, 394, 759-782
30. Kinniburgh, D. G.; Milne, C. J.; Benedetti, M. F.; Pinheiro, J. P.; Filius, J.; Koopal, L. K.; VanRiemsdijk, W. H., "Metal ion binding by humic acid: Application of the NICA-Donnan model." Environ. Sci. Technol. 1996, 30, 1687-1698.
31. Schmidt, B.; Loeschner, K.; Hadrup, N.; Mortensen, A.; Sloth, J. J.; Koch, C. B.; Larsen, E. H., "Quantitative characterization of gold nanoparticles by field-flow
fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry." Anal. Chem. 2011, 83, 2461-2468.
32. Wei, G. T.; Liu, F. K., Separation of nanometer gold particles by size exclusion chromatography. J. Chromatogr. A. 1999, 836, 253-260.
33. Lyman, J.; Fleming, R. H. "Composition of sea water" Mar. Res. 1940, 3, 134-146.
34. Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D., "Environmental exposure to mercury and its toxicopathologic implications for public health." Environ. Toxicol. 2003, 18, 149-75.
35. Tan, M.; Parkin, J. E. "Route of decomposition of thiomersal (thimerosal)." Int. J. Pharm. 2000, 208 , 23-34.
36. de Wuilloud, J. C. A.; Wuilloud, R. G.; Silva, M. F.; Olsina, R. A.; Martinez, L. D., "Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry." Spectroc. Acta Pt. B-Atom. Spectr. 2002, 57, 365-374.
37. Cattani, I.; Spalla, S.; Beone, G. M.; Del Re, A. A.; Boccelli, R.; Trevisan, M., "Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films." Talanta 2008, 74, 1520-6.
38. Widmann, A.; van den Berg, C. M. G., "Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode." Electroanalysis 2005, 17,
825-831.
39. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. "An effective fluorescent chemosensor for mercury ions." J. Am. Chem. Soc. 2000, 122, 6769-6770.
40. Guo, X. F.; Qian, X. H.; Jia, L. H., "A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution." J. Am. Chem. Soc. 2004, 126, 2272-2273.
41. Yu, C. J.; Cheng, T. L.; Tseng, W. L., "Effects of Mn2+ on oligonucleotide-gold
nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change." Biosens. Bioelectron. 2009, 25, 204-210. 79
42. He, Y.; Zhang, X.; Zeng, K.; Zhang, S.; Baloda, M.; Gurung, A. S.; Liu, G., "Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes." Biosens. Bioelectron. 2011.
43. Wang, J.; Liu, B., "Highly sensitive and selective detection of Hg (2+) in aqueous solution with mercury-specific DNA and Sybr Green I." Chem. Commun. 2008, 39, 4759-4761.
44. Wang, Z.; Heon Lee, J.; Lu, Y., "Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA." Chem. Commun. 2008, 45, 6005-6007.
45. Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A., "Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes." J. Am. Chem. Soc.
2006, 128, 2172-2173.
46. Ono, A.; Togashi, H., "Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions." Angew. Chem. Int. Ed. Engl. 2004, 43, 4300-4302.
47. Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H. "Selective fluorogenic and chromogenic probe for detection of silver ions and silver
nanoparticles in aqueous media." J. Am. Chem. Soc. 2009, 131, 2040-2041.
48. Wei, H.; Chen, C. G.; Han, B. Y.; Wang, E. K.," Enzyme colorimetric assay using unmodified silver nanoparticles." Anal. Chem. 2008, 80, 7051-7055.
49. Kanjanawarut, R.; Su, X. D., "Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal. Chem. 2009, 81,
6122-6129.
50. Zipper, H.; Brunner, H.; Bernhagen, J.; Vitzthum, F., "Investigations on DNA
intercalation and surface binding by SYBR Green I, its structure determination and 80 methodological implications." Nucleic Acids Re.s 2004, 32, e103.
51. Liu, J.; Lu, Y. " Rational design of “Turn-On” allosteric DNAzyme catalytic
beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity." Angew.
Chem.-Int. Edit.2007, 119, 7731-7734.
52. Chiang, C.K.; Huang, C.C.; Liu, C.W.; Chang, H.T. “Oligonucleotide-based
fluorescence probe for sensitive and selective detection of mercury(II) in aqueous
solution” Anal. Chem. 2008, 80, 3716-3721.
53. Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C. “Highly
sensitive electrochemical sensor for mercury (Ⅱ) ions by using a mercury- specific
oligonucleotide probe and gold nanoparticle-based amplification” Anal. Chem. 2009, 81,
7660-7666.
54. Cao, G.-R.; Zhu, B.; Li, J.; Xu, D. “Oligonucleotides- based biosensors with high sensitivity and selectivity for mercury using electrochemical impedance spectroscopy” Electrochemistry communications 2009, 11, 1815-1818.
55. Li, Q.; Zhou, X.; Xing, D. “Rapid and highly sensitive detection of mercury ion (Hg2+) by magnetic beads-based electrochemiluminescence assay” Biosens. Bioelectron. 2010, 26, 859-862.
56. Wang, H.; Wang, Y.; Jin, J.; Yang, R. “Gold nanoparticle-based colorimetric and turn-on fluorescent probe for mercury (Ⅱ) ions in aqueous solution” Anal. Chem. 2008,
80, 9021-9028.
57. Yu, C.; Cheng, T.-L.; Tseng, W.-L. “Effect of Mn2+ on oligonucleotide-gold
nanoparticle hybrids for colorimetric sensing of Hg2+: Imporving colorimetric sensitivity and accelerating color range” Biosens. Bioelectron. 2009, 25, 204-210.
58. Liu, J.; Lu, Y. “Rational design of Turn-on allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity” Angew.
81Chem. 2007, 119, 7731-7734.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code