Responsive image
博碩士論文 etd-0709113-021336 詳細資訊
Title page for etd-0709113-021336
論文名稱
Title
應用動態二次積分限制之強韌估測器設計
Robust Estimation with Dynamic Integral Quadratic Constraints
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-05
繳交日期
Date of Submission
2013-08-09
關鍵字
Keywords
不穩定標稱系統、線性矩陣不等式、新間隙尺度、二次積分限制、強韌估測器
integral quadratic constraint, robust estimation, unstable nominal part, nu-gap, linear matrix inequalities
統計
Statistics
本論文已被瀏覽 5661 次,被下載 606
The thesis/dissertation has been browsed 5661 times, has been downloaded 606 times.
中文摘要
在許多工程應用中,我們經常需要知道系統中某些狀態訊號或是這些狀態訊號的組合以完成診斷系統是否異常、監督系統或是控制系統的運作之用途。當這些訊號無法由感測器直接量測,這時就必須透過其它可量測的訊號和描述系統動態行為的數學模型並應用特定的演算法來估測這些訊號值。在許多實際的應用中這是一項重要問題,因此「估測技術」是一個由來已久的研究課題並且在系統理論界得到相當多的關注。由其是當系統模型具有不確定性時,估測的強韌性就必須要加以考慮這項課題。

為了處理系統模型包含有不同類型的不確定性,如參數不確定性、未知的動態模型、非線性操作子等,我們將採用二次積分限制(IQC)架構來設計強韌估測器。在 IQC 架構中,藉由二次積分限制不等式來描述各個不確定性的特性;然後匯整這些不等式獲得設計準則。所以,此架構有處理一個接一個「難以處理」操作的優點,因此更適合處理大型複雜的動態系統。

在本論文中,我們考慮系統含有穩定或不穩定標稱系統和能以 IQC 描述的不確定性之連結系統的強韌估測器設計問題。對於系統含穩定的標稱系統,文獻 [1] 已經考慮系統為連續時間設定的設計問題。在本論文中,我們擴展問題到系統為離散時間的設定,藉由兩種不同的方法來獲得兩種不同的設計準則。對於系統含不穩定的標稱系統,此問題雖然有少數的研究文獻,但現有的結果並非最佳。對於這個問題,我們將應用近年來所開發的強韌穩定性分析定理:「結合新間隙尺度與二次積分限制的定理」來獲得基於線性矩陣不等式(LMI)的設計準則。

我們以幾個學術和實際例子來測試所獲得的結果,這些數值例子驗證了我們提出的設計方法的有效性。
Abstract
In many applications, we often require the knowledge of certain state variables of a system, or specification combinations of these, for diagnosis, supervision, or control of the systems operation. When these signals cannot be measured directly by sensors, it would be necessary to estimate their values by certain algorithms based on other measured signals and a mathematical model that describes the dynamical behavior of the system. Due to its important role in many practical applications, "estimation technique" has been a long standing research topic and received considerable attention in the systems theory community. When the model of the system exhibits uncertainty, the robustness of the estimator has to be taken into account.

In order to handle systems with various types of uncertainties, such as parametric uncertainties, unmodelled dynamics, nonlinear operators, we adopt the Integral Quadratic Constraint (IQC) framework for designing robust estimators. In the IQC framework, the properties of individual uncertainties are described by integral quadratic inequalities; the inequalities are then aggregated to form the design criteria. As such, the framework has the advantage of allowing one to tackle "trouble-making" blocks in the system one-by-one, and thus is better suited for handeling large-scale complex dynamical systems.

In this thesis, we consider the robust estimation problem for systems with stable or unstable nominal part in feedback interconnection with a structured uncertainty that is described by IQC. For systems with stable nominal parts, the problem in the continuous-time setting has been considered in [1]. In this thesis, we extend the result to the discrete-time setting by two different approaches and obtain two different design criteria. For systems with unstable nominal parts, the problem has only been considered by a few researchers and the existing results are sparse at best. For this problem, we apply a recently-developed robust stability result arising from a blended nu-gap(ν-gap) metric and Integral Quadratic Constraint based analysis to obtain design criteria, posed as Linear Matrix Inequalities (LMI).

The results we obtained were tested by several numerical examples, some academic and some practical. The numerical experiments verify the effectiveness of the design approach we propose.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 v
第 1 章 緒論 1
1.1 文獻回顧 1
1.2 研究動機、目的與貢獻 7
1.3 論文大綱 8
1.4 符號說明 8
第 2 章 動態 IQC 之強韌估測器設計 10
2.1 問題描述 10
2.2 IQC 定理 10
2.3 LMI 強韌估測器設計準則 16
2.4 主要定理 18
2.5 數值例子 32
第 3 章 新間隙尺度/動態 IQC 之強韌估測器設計 43
3.1 問題描述 43
3.2 新間隙尺度/IQC 定理 43
3.3 LMI 強韌估測器設計準則 50
3.4 主要定理 52
3.5 數值例子 57
第 4 章 結論與未來展望 61
4.1 結論 61
4.2 未來展望 61
參考文獻 62
參考文獻 References
[1] C. W. Scherer and I. E. Köse, “Robustness with dynamic IQCs an exact state-space characterization of nominal stability with applications to robust estimation,” Automatica, vol. 44, no. 7, pp. 1666–1675, 2008.
[2] 林俊良, 強健控制系統 - 分析與設計, 國立編譯館, 1997.
[3] V. A. Yakubovich, “Frequency conditions for absolute stability of control systems with hysteresis nonlinearities,” Dokl. Akad. Nauk SSSR, vol. 149, no. 2, pp. 288–291, 1963.
[4] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,” IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 819–830, June 1997.
[5] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Systems & Control Letters, vol. 28, pp. 7–10, 1996.
[6] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox User’s Guide, 1995.
[7] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip
[8] F. J. D’Amato, A. Megretski, U. Jönsson, and M. A. Rotea, “Integral quadratic constraints for monotonic and slope-restricted diagonal operators,” in Proceedings of the American Control Conference, San Diego, California, June 1999, pp. 2375–2379.
[9] U. Jönsson and A. Megretski, “The Zames-Falb IQC for systems with integrators,” in IEEE Transactions on Automatic Control, vol. 45, no. 3, March 2000, pp. 560–565.
[10] H. Köroǧlu and C. W. Scherer, “Robust stability analysis against perturbations of smoothly time-varying parameters,” in Proceedings of the 45th IEEE Conference on Decision & Control, 2006.
[11] A. Megretski, “Integral quadratic constraints for systems with rate limiters,” LIDS, M.I.T., December 1997.
[12] C. Y. Kao and A. Rantzer, “Stability analysis of systems with uncertain time-varying delays,” Automatica, vol. 43, no. 6, pp. 959–970, 2007.
[13] C. Y. Kao, “On robustness of discrete-time LTI systems with varying time delays,” in The 17th World Congress. The International Federation of Automatic Control, Seoul, Korea, July 2008, pp. 12 336–12 341.
[14] ——, “On stability of discrete-time LTI systems with varying time delays,” IEEE Transactions on Automatic Control, vol. 57, pp. 1243–1248, 2012.
[15] U. Jönsson, C. Y. Kao, A. Megretski, and A. Rantzer, A Guide To IQC : A MATLAB Toolbox for Robust Stability and Performance Analysis, August 2004.
[16] V. Balakrishnan, “Lyapunov functionals in complex mu analysis,” IEEE Transactions on Automatic Control, vol. 47, no. 9, pp. 1466–1479, September 2002.
[17] C. W. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 896–911, July 1997.
[18] T. Furuhashi, S. Sangwongwanich, and S. Okuma, “A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer,” IEEE Transactions on Industrial Electronics, vol. 39, pp. 89–95, 1992.
[19] J. Wang and W. J. Wilson, “3D relative position and orientation estimation using kalman filter for robot control,” in The 1992 IEEE Intemational Conference on Robotics and Automation, 1992.
[20] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transaction of the ASME–Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.
[21] G. Welch and G. Bishop, “An introduction to the kalman filter,” Department of Computer Science University of North Carolina at Chapel Hill, July 2006.
[22] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Transaction of the ASME–Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.
[23] I. Yaesh and U. Shaked, “Game theory approach to optimal linear estimation in the minimum H_infty-sense,” in The 28th Conference on Decision and Control, 1989.
[24] K. M. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an H_infty setting,” IEEE Transactions on Automatic Control, vol. 36, no. 2, pp. 152–166, 1991.
[25] L. Xie, Y. C. Soh, and C. E. de Souza, “Robust kalman filtering for uncertain discrete-time systems,” IEEE Transactions on Automatic Control, vol. 39, no. 6, pp. 1310–1314, 1994.
[26] C. E. de Souza, U. Shaked, and M. Fu, “Robust H_infty filtering for continuous time varying uncertain systems with deterministic input signals,” IEEE Transactions on Signal Processing, vol. 43, pp. 709–719, 1995.
[27] L. Xie, “On robust H 2 estimation,” Acta Automatica Sinica, vol. 31, pp. 1–12, 2005.
[28] J. C. Geromel, M. C. de Oliveira, and J. Bernussou, “Robust filtering of discrete-time linear systems with parameter dependent lyapunov functions,” in Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December 1999.
[29] J. C. Geromel, “Optimal linear filtering under parameter uncertainty,” IEEE Transactions on Signal Processing, vol. 47, no. 1, pp. 168–175, 1999.
[30] J. C. Geromel and M. C. de Oliveira, “ H_2 and H_infty
robust filtering for convex bounded uncertain systems,” IEEE Transactions on Automatic Control, vol. 46, no. 1, pp. 100–107, January 2001.
[31] J. C. Geromel, M. C. de Oliveira, and J. Bernussou, “Robust filtering of discrete-time linear systems with parameter dependent lyapunov functions,” SIAM Journal on Control and Optimization, vol. 41, pp. 700–711, 2002.
[32] L. Xie, L. Lu, D. Zhang, and H. Zhang, “Improved robust H_2 and H_infty filtering for uncertain discrete-time systems,” Automatica, vol. 40, pp. 873–880, 2004.
[33] Z. Duan, J. Zhang, C. Zhang, and E. Mosca, “Robust H_2 and H_infty filtering for uncertain linear systems,” Automatica, vol. 42, pp. 1919–1926, 2006.
[34] E. N. Goncalves, R. M. Palhares, and R. H. C. Takahashi, “ H_2 / H_infty filter design for systems with polytope-bounded uncertainty.” IEEE Transactions on Signal Processing, vol. 54, pp. 3620–3626, 2006.
[35] R. M. Palhares, D. Tournier, C. E. de Souza, and P. L. D. Peres, “Robust H_infty filtering for uncertain discrete-time state-delayed systems,” IEEE Transactions on Signal Processing, vol. 49, pp. 1696–1703, 2001.
[36] H. Gao and C. Wang, “A delay-dependent approach to robust H_infty filtering for uncertain discrete-time state-delayed systems,” IEEE Transactions on Signal Processing, vol. 52, pp. 1631–1640, 2004.
[37] J. H. Kim, S. J. Ahn, and S. Ahn, “Guaranteed cost and H_infty filtering for discrete-time polytope uncertain systems with time delay,” Journal of The Franklin Institute, vol. 342, pp. 365–378, 2005.
[38] J. Wang, C. Wang, and H. Gao, “Robust H_infty filtering for LPV discrete-time state-delayed systems,” in Proceeding of the 2004 American Control Conference, 2004.
[39] X. M. Zhang and Q. L. Han, “Delay-dependent robust H_infty
filtering for uncertain discrete-time systems with time-varying delay based on a finite sum inequality,” IEEE Transactions on Circuits and Systems, vol. 53, pp. 1466–1470, 2006.
[40] J. Qiu, G. Feng, and J. Yang, “Improved delay-dependent H_infty filtering design for discrete-time polytopic linear delay systems,” IEEE Transactions on Circuits and Systems, vol. 55, pp. 178–182, 2008.
[41] Y. He, G. P. Liu, D. Rees, and M. Wu, “ H_infty filtering for discrete-time systems with time-varying delay,” Signal Processing, vol. 89, pp. 275–282, 2009.
[42] H. Li and M. Fu, “A linear matrix inequality approach to robust H_infty filtering,” IEEE Transactions on Signal Processing, vol. 45, pp. 2338–2350, September 1997.
[43] M. Ravuri and H. H. Asada, “Robust state estimation for uncertain nonlinear systems described using integral quadratic constraints: An LMI formulation,” in Proceedings of the American Control Conference, Chicago, Illinois, June 2000, pp. 1293–1297.
[44] K. Sun and A. Packard, “Robust H_2 and H_infty filtering for uncertain LFT systems,” IEEE Transactions on Automatic Control, vol. 50, pp. 715–720, 2005.
[45] A. G. Kallapur and I. R. Petersen, “A discrete-time robust extended kalman filter for uncertain systems with sum quadratic constraints.” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 850–854, April 2009.
[46] G. Scorletti and V. Fromion, “Further results on the design of robust H_infty feedforward controllers and filters,” in Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, December 2006.
[47] J. Veenman, H. Köroǧlu, and C. W. Scherer, “An IQC approach to robust estimation against perturbations of smoothly time-varying parameters,” in the 47 th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, pp. 2533–2538.
[48] X. Bombois, H. Hjalmarsson, and G. Scorletti, “Identification for robust H_2 deconvolution filtering,” Automatica, vol. 46, pp. 577–584, 2010.
[49] L. Xie, C. E. de Souza, and Y. C. Soh, “Robust filtering for uncertain systems with unstable modes,” in Proceedings of the 33rd Conference on Decision and Control, 1994.
[50] B. Bayon, G. Scorletti, and E. Blanco, “Robust L 2 -gain observation for structured uncertainties: An LMI approach,” in 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, December 2011.
[51] G. Zames and A. K. El-sakkary, “Unstable systems and feedback: The gap metric,” in Allerton Conference, 1980, pp. 380–385.
[52] M. Vidyasagar, “The graph metric for unstable plants and robustness estimates for feedback stability,” IEEE Transactions on Automatic Control, vol. 29, pp. 403–418, 1984.
[53] T. T. Georgiou and M. C. Smith, “Optimal robustness in gap metric,” IEEE Transactions on Automatic Control, vol. 35, pp. 673–686, 1990.
[54] L. Qiu and E. J. Davison, “Pointwise gap metrics on transfer matrices,” IEEE Transactions on Automatic Control, vol. 37, pp. 741–758, 1992.
[55] G. Vinnicombe, “Frequency domain uncertainty and the graph topology,” IEEE Transactions on Automatic Control, vol. 38, no. 9, pp. 1371 –1383, sep 1993.
[56] U. Jönsson, , M. Cantoni, , and C. Y. Kao, “On structured robustness analysis for feedback interconnections of unstable systems,” in 47th IEEE Conference on Decision and Control, dec. 2008, pp. 351 –356.
[57] M. Cantoni, U. Jönsson, and C. Y. Kao, “Robustness analysis for feedback interconnections of distributed systems via integral quadratic constraints,” IEEE Transactions on Automatic Control, vol. 57, pp. 302–317, 2012.
[58] I. E. Köse and C. W. Scherer, “Robust L 2 -gain feedforward control of uncertain systems using dynamic IQCs,” International Journal of Robust and Nonlinear Control, vol. 19, pp. 1224–1247, September 2009.
[59] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H_infty control,” International Journal of Robust and Nonlinear Control, vol. 4, pp. 421–448, 1994.
[60] X. Li, Z. Li, and H. Gao, “Further results on H_infty
filtering for discrete-time systems with state delay.” International Journal of Robust and Nonlinear Control, vol. 21, pp. 248–270, 2011.
[61] H. Gao, X. Meng, and T. Chen, “A new design of robust H_infty
filters for uncertain discrete-time state-delayed systems,” in The 46th IEEE Conference on Decision and Control, 2007.
[62] G. E. Dullerud and F. G. Paganini, A Course in Robust Control Theory. Springer, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code