Responsive image
博碩士論文 etd-0709113-162553 詳細資訊
Title page for etd-0709113-162553
論文名稱
Title
使用無探針工具於摩擦攪拌銲接之接合特性的研究
Studies on the joint characteristics of friction stir welding using pinless tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-08-10
關鍵字
Keywords
無探針工具、摩擦攪拌銲接、鎳鍍層、低碳鋼、銅-鎳合金、鋁合金、嵌入棒
embedded rod, friction stir welding, steel, pinless tool, Cu-Ni alloy, aluminum alloy, Ni coating
統計
Statistics
本論文已被瀏覽 5656 次,被下載 1146
The thesis/dissertation has been browsed 5656 times, has been downloaded 1146 times.
中文摘要
近年來,摩擦攪拌銲接(FSW)的發展趨勢,正朝向使用無探針工具取代傳統探針工具以進行薄金屬板的搭接,此方法可避免常見的銲道缺陷以及具有廣泛的銲接操作條件之優點。因此本研究首先提出一嶄新動力計,使用具有小直徑(3 mm)探針的銲接工具,探討摩擦攪拌銲接鋁合金6061-T6過程中,轉速與進給率對擠壓力量與進給力的影響,並與無探針工具之結果作比較,探討進給力的形成機制。研究結果顯示,平均擠壓力量及進給力隨轉速增加或是進給率降低而減少。在工具與工件材料之界面溫度,會影響銲接擠壓力量與進給力。進給力之形成是工具肩部迴轉時,在前進邊與後退邊沿銲接方向的摩擦力之差。
為了增加摩擦界面的產熱及工具帶動材料的能力,本研究以同種金屬互容性最高,摩擦係數最大的理念,提出一種具有嵌入材料之新穎工具。探討摩擦攪拌點銲(FSSW)和摩擦攪拌銲接鋁合金板6061-T6過程中,嵌入棒直徑(d)對升溫、最大飽和溫度、銲道塑性流動層厚度及接點強度的影響。在工具內嵌入一根圓棒的功能,是能夠以鋁的自我配對,增加銲接的溫升率、最大溫度,以及銲道所形成之塑性流動區的深度。因為工具會有更高的摩擦力以及黏附作用,所以銲道的極限負載會隨著嵌入圓棒的直徑增加而增加。在FSSW中,使用嵌入工具(d = 10 mm)時,最大的溫升率約為12.8oC/s,銲道的極限負載約為2 kN。而當使用傳統無嵌入料之平坦工具時,這些值僅約為7.4oC/s及1.35 kN。在FSW中,使用嵌入工具(d = 10 mm)時,銲道的極限負載約為1.46 kN。而當使用傳統無嵌入料之平坦工具時,這僅約為0.72 kN。在工具擠入工件表面深度0.2 mm、工具轉速為800 rpm以及進給速率為10 mm/min的銲接條件下,使用嵌入工具(d = 10 mm)時,可成功地對接厚3 mm的鋁板。
本研究另以傳統無嵌入料之平坦工具,進行銅-鎳合金與低碳鋼板之摩擦攪拌搭接(FSLW)。為了防止材料配對面受高溫而發生氧化,本研究提出在工件之配對面鍍鎳的方法,探討中界層厚度、工具轉速及進給率對兩材料接合強度的影響。在銅-鎳合金側5 μm的鎳鍍層厚度以及在低碳鋼側20 μm的鎳鍍層厚度,為最佳的鎳層厚度設置。使用這個鍍層厚度的條件,在銲接的高溫以及高接觸面壓力下,鎳與鎳界面之間會形成相互的擴散,能減少銅-鎳合金與低碳鋼直接銲接時在接合面所形成的微孔隙,並能保護配對面不受銲接熱而氧化。剪斷強度會大幅上升至飽和值295 MPa,會高於接點無鎳鍍層的2.9倍。以鎳鍍層的方法來產生強力接合的機制,可以被解釋為Fe和Cu原子擴散到鎳鍍層中,以及在兩鎳鍍層界面間材料的自我擴散。最大的接點剪斷強度,發生在工具轉速800到1400 rpm和進給速率10 mm/min 的接合條件。這些條件下接合面的溫度會高於900oC,並且保持時間大於83 s。銲接的進給率顯著影響保持時間與接點的強度。
Abstract
In recent year, a trend in FSW toward the use of pinless tool to replace the pin tool in sheet welding is to achieve increasing feeding speed and to avoid key hole. Hence, a novel dynamometer is proposed to measure the time histories of welding forces including the downward, clamping, and feeding forces during friction stir welding (FSW). The FSW experiments involve the butt joining of aluminum alloy 6061-T6 plates using the tool with pin of 3 mm diameter to investigate the effects of rotating speeds and feeding speeds on the downward force and feed force. To compare with the result of using pinless tool, the formation mechanism of the feeding force was investigated. Empirical equations of the mean downward force and the mean feeding forces in terms of rotating speed and the feeding speed are derived. The mean downward force and the mean feeding force are physically influenced by the interface temperature between the tool and the workpiece material. The feeding force is the difference between the friction forces, respectively acting on the advancing side and the retreating side of workpiece.
A pinless tool with an embedded rod is proposed in the present study. A rod made of the same material as the workpiece was selected to enhance heat generation by the higher friction coefficient. Further, the higher compatibility with higher temperature can also enhance the adhesion behavior between the tool and the workpiece. The effects of rod diameter (d) on the welding properties and mechanism of weld formation were investigated. For friction stir spot welding (FSSW), the maximum rate of temperature rise was about 12.8 oC/s, and the ultimate load was about 2 kN for this pinless tool (d = 10 mm), while these values are only about 7.4 oC/s and 1.35 kN for the plain one. For FSW, the ultimate load was about 1.46 kN for this tool, and about 0.72 kN for the plain one. The abutting edges of sheets with a thickness of 3 mm could be welded using this pinless tool.
Cu-Ni alloy and low-carbon steel were joined by friction stir lap welding (FSLW) with the help of a nickel coating. The appropriate coating thickness and appropriate welding parameters were investigated. A thickness of 5 μm on the Cu-Ni side and 20 µm on the steel side are the most appropriate settings for the Ni coating. Using these parameters, the micro-voids were reduced in size due to the self-diffusion in the Ni/Ni interface at high interface temperature and high contact pressure. The shear strength was about 2.9 times as high as that of the joints without Ni coating. The strong bonding mechanism using a nickel coating could be explained by the iron and copper atoms diffusing into the coating through the interface at high interface temperature and holding time. The maximum shear strength was achieved for the most appropriate thicknesses of Ni coating at the rotating speeds of 800-1400 rpm, and the feeding rate of 10 mm/min. With these welding parameters, the maximum interface temperature was higher than 900◦C and the holding time was longer than 83 s. The feeding rates had significant effects on the holding time and the shear strength of the joint.
目次 Table of Contents
論文審定書 i
謝誌 ii
總目錄 iii
圖目錄 vii
專有名詞對照表 xii
論文摘要(中文) xiii
論文摘要(英文) xv
第一章 緒論
1.1 研究背景 1
1.2 摩擦攪拌銲接對產業界之重要性 3
1.3 文獻回顧 7
1.3.1 摩擦攪拌對接之發展 7
1.3.2 摩擦攪拌搭接之發展 14
1.4 本論文之研究方向 21
1.5 本論文之架構 23
第二章 鋁合金摩擦攪拌銲接過程之三分力及進給力的形成機制
2.1 前言 24
2.2 實驗設備與程序 26
2.2.1 實驗設備 26
2.2.2 工具和試片 29
2.2.3 實驗程序 30
2.3 實驗結果與討論 31
2.3.1 銲接力量與溫度 31
2.3.2 轉速與進給率對銲接力量的影響 33
2.3.3 進給力沿接合方向的形成機制 36
2.3.4 摩擦面材料流動對進給力的影響 39
2.4 結論 42
第三章 使用具有嵌入材料的銲接工具探討鋁合金摩擦攪拌銲接之接合行為
3.1 前言 43
3.2 實驗設備與程序 45
3.2.1 新穎的銲接工具 45
3.2.2 實驗試片 46
3.2.3 實驗程序 47
3.3 實驗結果 48
3.3.1 摩擦攪拌點銲 48
3.3.1.1 不同嵌入棒直徑對銲接力量與溫度之影響 48
3.3.1.2 不同嵌入棒直徑對銲道結構之影響 51
3.3.1.3 不同嵌入棒直徑對銲道強度之影響 53
3.3.2 摩擦攪拌銲接 56
3.3.2.1 不同嵌入棒直徑對銲道結構之影響 56
3.3.2.2 不同嵌入棒直徑對銲道強度之影響 57
3.4 討論 59
3.4.1 嵌入棒直徑對產熱之分析 59
3.4.2 銲接工具壽命與解決方法 60
3.5 結論 62
第四章 不同鎳中介層厚度對銅-鎳合金與低碳鋼板摩擦攪拌搭接之可行性的探討
4.1 前言 63
4.2 實驗設備與程序 65
4.2.1 實驗設備 65
4.2.2 工具和試片 66
4.2.3 實驗程序 67
4.3 實驗結果與討論 69
4.3.1 銲接力量與溫度 69
4.3.2 鎳鍍層厚度對剪斷強度之影響 70
4.3.3 剪斷面之電子顯微鏡照片觀察 71
4.3.4 剪斷面之成份分析 73
4.3.5 接合界面之元素擴散分析 75
4.4 結論 77
第五章 不同工具轉速與進給速率對銅-鎳合金與低碳鋼板摩擦攪拌搭接接點剪斷強度之影響
5.1 前言 78
5.2 實驗設備與程序 80
5.3 實驗結果與討論 81
5.3.1 銲接參數對擠壓力量和界面溫度之影響 81
5.3.2 保持時間對剪斷強度之影響 82
5.3.3 剪斷面之電子顯微鏡照片觀察 83
5.3.4 剪斷面之成份分析 85
5.3.5 接合界面之元素的擴散分析 88
5.3.6 多道次銲道的評估 90
5.3 結論 92
第六章 總結與展望
6.1 總結 93
6.2 未來展望 95
參考文獻 96
作者簡介與個人著作 107
參考文獻 References
[1] 周長彬、蘇程裕、蔡樁丕與郭央諶, 銲接學, 全華圖書股份有限公司, 1-9.
[2] W.M. Thomas and E.D. Nicholas, Friction stir welding for the transportation industries, Materials and Design, Vol.18, No.4/6 (1997) 269-273.
[3] M.A. Sutton, B. Yang, A.P. Reynolds and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Materials Science and Engineering A, Vol. 323 (2002) 160-166.
[4] K. Nakata, Friction stir welding of copper and copper alloys, Welding International, Vol. 19, No. 12 (2005) 929-933.
[5] M. P. Miles, T. W. Nelson, R. Steel, E. Olsen and M. Gallagher, Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel, Science and Technology of Welding and Joining, Vol. 14, No.3 (2009) 228-232.
[6] A. Abdollah-Zadeh, T. Saeid and B. Sazgari, Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, Journal of Alloys and Compounds, Vol.460 (2008) 535-538.
[7] M. Dehghani, A. Amadeh and S.A.A. Akbari Mousavi, Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel, Materials and Design, Vol.49, No.4 (2013) 433-441.
[8] Y. Wei, J. Li, J. Xiong, F. Huang, F. Zhang and S.H. Raza, Joining aluminum to titanium alloy by friction stir lap welding with cutting pin, Materials Characterization, Vol.71 (2012) 1-5.
[9] R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, Vol.50 (2005) 1-78.
[10] Z. Ahmad, Recent Trends in Processing and Degradation of Aluminium Alloys, InTech, (2011) 65.
[11] P.M.G.P. Moreira, M.A.V. de Figueiredo and P.M.S.T. de Castro, Fatigue behaviour of FSW and MIG weldments for two aluminium alloys, Theoretical and Applied Fracture Mechanics, Vol.48 (2007) 169-177.
[12] A.K. Lakshminarayanan, V. Balasubramanian and K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints, The International Journal of Advanced Manufacturing Technology, Vol.40 (2009) 286-296.
[13] W.M. Thomas, Friction stir welding and related friction process characteristics, INALCO '98, 7 th International Conference on Joints in Aluminium, (1998).
[14] T. Kawasaki, T. Makino, K. Masai, H. Ohba, Y. Ina and M. Ezumi, Application of Friction Stir Welding to Construction of Railway Vehicles, JSME International Journal A, Vol.47, No.3 (2003) 502-511.
[15] H. Hori, H. Hino, Application of friction stir welding to the car body, Welding international, Vol.17, No.4 (2003) 287-292.
[16] H. Takehisa, Friction stir welding technology of aluminum alloys for aircraft, Journal of Japan Institute of Light Metals, Vol.56, No.3 (2006) 178-183.
[17] L. Li, K. Nagai and F. Yin, Progress in cold roll bonding of metals, Science and Technology of advanced materials, Vol.9, No.2 (2008) 023001.
[18] M. Acarer, B. Gulenc and F. Findik, Investigation of explosive welding parameters and their effects on microhardness and shear strength, Materials and Design, Vol.24 (2003) 659-664.
[19] J. Gandra, R.M. Miranda and P. Vilaca, Effect of overlapping direction in multipass friction stir processing, Materials Science and Engineering A, Vol.528 (2011) 5592-5599.
[20] Z. Ahmad, Aluminium Alloys - New Trends in Fabrication and Applications, InTech, (2012) 175.
[21] O. Frigaard, Ø. Grong and O.T. Midling A process model for friction stir welding of age hardening aluminium alloys. Metall Mater Trans A, Vol.32 (2001) 1189-200.
[22] J.Q. Su, T.W. Nelson, R. Mishra and M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminum. Acta Materialia, Vol. 51 (2003) 713-729.
[23] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Materials Science and Engineering A, Vol. 415 (2006) 250-254.
[24] H. Fujii, Y.G. Kim, T. Tsumura, T. Komazaki and K. Nakata, Estimation of material flow in stir zone during friction stir welding by distribution measurement of Si particles, Materials Transactions, Vol. 47, No. 1 (2006) 224-232.
[25] W.M. Thomas, K.I. Johnson and C.S. Wiesner, Friction stir welding-recent developments in tool and process technologies, Advanced Engineering Materials, Vol. 5, No.7 (2003) 485-490.
[26] E.F. Shultz, E.G. Cole, C.B. Smith, M.R. Zinn, N.J. Ferrier and F.E. Pfefferkorn, Effect of compliance and travel angle on friction stir welding with gaps, Journal of Manufacturing Science and Engineering, Vol. 132 (2010) 1-9.
[27] H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang and Y. Zhao, The investigation of typical welding defects for 5456 aluminum alloy friction stir welds, Materials Science and Engineering A, Vol.433 (2006) 64-69.
[28] K. Kumar and Satish V. Kailas, The role of friction stir welding tool on material flow and weld formation, Materials Science and Engineering A, Vol.485 (2008) 367-374.
[29] K. Kumar, Satish V. Kailas and T. S. Srivatsan, Influence of Tool Geometry in Friction Stir Welding, Materials and Manufacturing Processes, Vol.23 (2008) 188-194.
[30] K. Kumar, Satish V. Kailas and T. S. Srivatsan, The Role of Tool Design in Influencing the Mechanism for the Formation of Friction Stir Welds in Aluminum Alloy 7020, Materials and Manufacturing Processes, Vol.26 (2011) 915-921.
[31] W.M. Thomas, Friction stir welding and related friction process characteristics, Proceedings, INALCO, Cambridge, 16 April 1998.
[32] W.M. Thomas and R.E. Andrews, High performance tools for friction stir welding (FSW), International Patent Application WO 9952669.
[33] W.M. Thomas and M.F. Gittos, Development of friction stir tools for the welding of thick (25mm) aluminium alloys. TWI Research Board Report 6921999 December 1999.
[34] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes, Improvements relating to friction welding, Pat. No. WO 9310935, 1993 and US5460317 1995.
[35] K. Elangovan, V. Balasubramanian and M. Valliappan, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy, Materials and Design, Vol.29 (2008) 362-373.
[36] K. Elangovan and V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy, Materials Science and Engineering A, Vol. 459 (2007) 7-18.
[37] K. Elangovan and V. Balasubramanian, Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy, Journal of Materials Processing Technology, Vol. 200 (2008) 163-175.
[38] G. Buffa, J. Hua, R. Shivpuri and L. Fratini, Design of the friction stir welding tool using the continuum based FEM model, Materials Science and Engineering A 419 (2006) 381-388.
[39] Y.-H. Zhao, S.-B. Lin, F.-X. Qu and L. Wu, Influence of pin geometry on material flow in friction stir welding process, Materials Science and Technology, Vol.22, No.1 (2006) 45-50.
[40] R.A. Prado, L.E. Murr , K.F. Soto and J.C. McClure, Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC, Materials Science and Engineering A349 (2003) 156-165.
[41] J.D Backer, A.K. Christiansson, J. Oqueka and G. Bolmsjö, Investigation of path compensation methods for robotic friction stir welding, Industrial Robot: An International Journal, Vol. 39, No.6 (2012) 601-608.
[42] Y. Hovanski, M.L. Santella and G.J. Grant, Friction stir spot welding of hot-stamped boron steel, Scripta Materialia, Vol.57 (2007) 873-876.
[43] X. Cao and M. Jahazi, Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy, Materials and Design, Vol.32 (2011) 1-11.
[44] Y.C. Chen and K. Nakata, Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys, Materials and Design, Vol.30 (2009) 469-474.
[45] Y.C. Chen and K. Nakata, Friction stir lap joining aluminum and magnesium alloys, Scripta Materialia, Vol.58 (2008) 433-436.
[46] K. Kimapong, and T. Watanab, Lap joint of A5083 aluminum and SS400 steel by friction stir welding, Materials Transactions, Vol.46, No.4 (2005) 835-841.
[47] K. Kimapong, and T. Watanab, Effect of Welding Parameters on Mechanical Property of FSW Lap Joint between Aluminum and steel, Materials Transactions, Vol.46, No.10 (2005) 2211-2217.
[48] Y.C. Chen, T. Komazaki, Y.G. Kim, T. Tsumura and K. Nakata, Interface microstructure study of friction stir lap joint of AC4C cast aluminum alloy and zinc-coated steel, Materials Chemistry and Physics, Vol. 111 (2008) 375-380.
[49] Y.C. Chen, T. Komazaki, T. Tsumura and K. Nakata, Role of zinc coat in friction stir lap welding Al and zinc coated steel, Materials Science and Technology, Vol.24 (2008) 33-39.
[50] K. Aota and K. Ikeuchi, Friction stir welding of aluminium lap joint by tool without probe, Welding International, Vol. 24, No. 3, (2010) 197-205.
[51] G. Zhang, W. Su, J. Zhang and Z. Wei, Friction stir brazing: a novel process for fabricating Al/Steel layered composite and for dissimilar joining of Al to steel, Metallurgical and Materials Transactions A, Vol.42 (2011) 2850-2861.
[52] M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro and T.R. Strohaecker, The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds, Journal of Materials Processing Technology, Vol.213 (2013) 997-1005.
[53] C.D. Cox, B.T. Gibson, A.M. Strauss and G.E. Cook, Effect of Pin Length and Rotation Rate on the Tensile Strength of a Friction Stir Spot-Welded Al Alloy: A Contribution to Automated Production, Materials and Manufacturing Processes, Vol.27 (2012) 472-478.
[54] K. Aota and K. Ikeuchi, Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates, Welding International, Vol. 23 (2009) 572-580.
[55] Y. Tozaki, Y. Uematsu and K. Tokaji, A newly developed tool without probe for friction stir spot welding and its performance, Journal of Materials Processing and Technology, Vol. 210, No. 6-7 (2010) 844-851.
[56] D. Bakavos, Y. Chen, L. Babout and P. Prangnell, Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet, Metallurgical and Materials Transactions A, Vol. 42 (2011) 1266-1282.
[57] J. D. Kinton, and J. Tlusty, Method and apparatus for controlling downforce during friction stir welding, European Pat. Appl. No. EP 0968788A2, (2000).
[58] M.J. Hansen, J.A. Bushey and M.F. Nemeth, Friction stir welding spindle with axially displaceable spindle shaft, PCT No. WO 03/084707A1, (2003).
[59] T.V. Stotler and T.J. Trapp, Friction stir welding travel axis load control method and apparatus, Pat. No. US 2005/0040209A1, (2005).
[60] V. Soundararajan, S. Zekovic and R. Kovacevic, Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061, International Journal of Machine Tools and Manufacture, Vol.45, No.14 (2005) 1577-1587.
[61] C.D. Sorensen, and A.L. Stahl, Experimental measurements of load distribution on friction sir weld pin tools, Metallurgical and Materials Transactions B, Vol.38, No.3 (2007) 451-459.
[62] C. Blignault, D.G. Hattingh, G.H. Kruger, T.I. Van Niekerk and N.M. James, Friction stir weld process evaluation by mult-axial transducer, Measurement, Vol.41, No.1 (2008) 32-43.
[63] D.G. Hattingh, C. Blignault, G.H. Kruger, T.I. Van Niekerk and N.M. James, Characterization of the influences on FSW tool geometry of welding forces and weld tensile strength using an instrumented tool, Journal of Materials Processing Technology, Vol.17, No.2 (2008) 46-57.
[64] Y. J. Chao, S. Liu and C. H. Chien, Friction Stir Welding of Al 6061-T6 Thick Plates Part I – Experimental Analyses of Thermal and Mechanical Phenomena, Journal of the Chinese Institute of Engineers, Vol. 31, No.5 (2008) 757-767.
[65] Y. J. Chao, S. Liu and C. H. Chien, Friction Stir Welding of Al 6061-T6 Thick Plates Part II – Numerical Modeling of the Thermal and Heat Transfer Phenomena, Journal of the Chinese Institute of Engineers, Vol.31, No.5 (2008) 769-779.
[66] Nippon Bearing Co. Website, NB eng. Inform., NB linear system, 2008, Eng-18.
[67] J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen, and B.W. Webb, A look at the statistical identification of critical process parameters in friction stir welding, Welding Journal, Vol. 86, No. 4 (2007) 97-103.
[68] D. Bakavos and P.B. Prangnell, Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Science and Technology of Welding and Joining, Vol.14 (2009) 743-756.
[69] Y.J. Chao and X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. Journal of Materials and Processing and Manufacturing Science, Vol.7 (1998) 215-233.
[70] H. Schimidt, J. Hattel and J. Wert, An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, Vol.12 (2004) 143-157.
[71] E. Rabinowicz, The dependence of the adhesive wear coefficient of the surface energy of adhesion. Wear of Materials, (1997) 30-46.
[72] B. Bhushan, Principles and applications of tribology. Wiley interscience, New York, (1999) 396-397.
[73] H.J. Liu, H. Fujii, M. Meada and K. Nogi, 2003. Mechanical properties of friction stir welded joints of 1050-H24 aluminium alloy. Science and Technology of Welding and Joining 8, 450-454.
[74] W. Yuan, R.S. Mishra, S. Webb, Y.L. Chen. B. Carlson, D.R. Herling and G.J. Grant, Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. Journal of Materials Processing Technology, Vol.211 (2011) 972-977.
[75] O.T. Midling and O. Grong, Process model for friction welding of Al-Mg-Si alloys and Al-SiC metal matrix composites. Part 1: HAZ temperature and strain rate distribution. Acta Metallurgica et Materialia, Vol.42 (1994) 1595-1609.
[76] M. Kimura, M. Kusaka, K. Seo and A. Fuji, Joining phenomena during friction stage of A7075-T6 aluminium alloy friction weld. Science and Technology of Welding and Joining, Vol.10 (2005) 378-383.
[77] M. Kimura, M. Kusaka, K. Seo and A. Fuji, Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel. Science and Technology of Welding and Joining, Vol.14 (2009) 688-695.
[78] C.J. Dawes and W.M. Thomas, Friction stir process welds aluminum alloys. Welding Journal, (1996) 41-45.
[79] D.H. Choi, C.Y. Lee, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song, H.S. Park, Y.J. Kim, C.D. Yoo and S.B. Jung, Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates. International Journal of Refractory Metals & Hard Materials, Vol. 27 (2009) 931-936.
[80] A. Elrefaey, M. Takahashi and K. Ikeuchi, Preliminary investigation of friction stir welding aluminum/copper lap joints. Welding in the World, Vol.49 (2005) 93-101.
[81] O. Yilmaz and M. Aksoy, Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple, Journal of Materials Processing Technology, Vol.121 (2002) 136-142.
[82] H. Sabetghadam, A. Zarei Hanzaki and A. Araee, Diffusion bonding of 410 stainless steel to copper using a nickel interlayer, Materials Characterization, Vol.61 (2010) 626-634.
[83] D.M. Jacobson, and G. Humpston, Principles of Brazing, ASM International, 207 (2005).
[84] V. Soundararajan, E. Yarrapareddy and R. Kovacevic, Investigation of the Friction Stir Lap Welding of Aluminum Alloys AA 5182 and AA 6022, Journal of Materials Engineering and Performance, Vol.16, No.4 (2007) 477-484.
[85] P. Xue, B. L. Xiao, D. Wang and Z. Y. Ma, Achieving high property friction stir welded aluminium/copper lap joint at low heat input, Science and Technology of Welding and Joining,Vol.16, No.8 (2011) 657-661.
[86] A. Abdollah-Zadeh, T. Saeid and B. Sazgari, Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, Journal of Alloys and Compounds, Vol.460 (2008) 535-538.
[87] T. Saeida, A. Abdollah-zadehb and B. Sazgari, Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding, Journal of Alloys and Compounds, Vol.490 (2010) 652-655.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code