Responsive image
博碩士論文 etd-0709116-102224 詳細資訊
Title page for etd-0709116-102224
論文名稱
Title
探討銅、鐵雙金屬氧化物降解亞甲基藍和對硝基苯酚的反應
Oxidation of Methylene Blue(MB) and p-Nitrophenol(PNP) using a Bimetallic(Cu, Fe) catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-04
繳交日期
Date of Submission
2016-08-09
關鍵字
Keywords
亞甲基藍、觸媒、合金、對硝基苯酚
Bimetallic, Oxidation, Methylene Blue, p-Nitrophenol
統計
Statistics
本論文已被瀏覽 5646 次,被下載 0
The thesis/dissertation has been browsed 5646 times, has been downloaded 0 times.
中文摘要
工業排放的廢水,造成水中有機染劑的污染一直以來是個嚴重的問題,除了嚴重影響生活的環境還會對人體造成健康上的威脅。近年來水汙染議題越來越被重視,自然而然我們會希望用有效率的方式來處理這個問題。因此有了高級氧化處理法(advanced oxidation processes),這種方式通常會使用O 3、 H2O2、 UV等無汙染的氧化劑配合催化劑產生羥基自由基(hydroxyl radical)與超氧化氫自由基(hydroperoxyl radical)將有機物或者染劑進行降解破壞,改善汙染問題。本實驗以化學沉澱法將溶液中的鐵離子和銅離子氧化還原製備出超順磁的雙金屬和金奈米粒子。透過X-ray 粉末繞射儀和以穿透式電子顯微鏡分析奈米粒子的特徵,活化過氧化氫,並使用感應偶合電漿質譜儀分析奈米粒子中所含金屬比例。接著以亞甲基藍(methylene blue)當作汙染物,並且改變奈米粒子中銅的比例,透過紫外光譜儀(Ultraviloet-visible spectroscopy)觀察在不同反應時間亞甲基藍的消色降解程度。在pH為4的反應條件下,反應60分鐘後,製備的雙金屬和金奈米粒子,我們將它命名為Fe-Cu-0.8消色程度超過95%,在動力學分析中,反應屬一級反應。接著測試製備出來的Fe-Cu-0.8是否對不同有機汙染物也能有效進行催化降解,因此選擇對硝基苯酚當作目標分子,採同一反應系統測試催化效果,並透過紫外光譜儀觀察不同時間對硝基苯酚的光譜情況。接下來找出最適合的反應條件,進行重複使用實驗,重複五次後催化效果還具有80%。製備出來的雙金屬合金具重複使用以及兼有磁性好回收的優點,此項技術用於處理受染料污染的汙水中,將來具有商業發展性。
Abstract
Industrial dyes are an increasingly important class of wastewater pollutants that cause serious environmental and health issues. Such dyes, when left untreated result in chemical and biological changes to the aquatic environment, as well as being toxic to humans. Advanced Oxidation Processes (AOPs) involve more than one type of oxidation mechanism. These reactions accelerate production of the hydroxyl radical and hydroperoxyl radical, which are highly reactive and can degrade organic compounds and dyes. The AOP technique utilizes Fenton’s reagent, ultra violet (UV) radiation, and ozone (O3). In the first part of our experiment, we synthesized the bimetallic alloy Fe3O4/CuO, and used ICP-MS to monitor the Cu/Fe alloy ratio. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structure of the nanoparticles. A superconducting quantum interference device (SQUID) confirmed the magnetic properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state of the nanoparticle alloy constituents. We selected methylene blue (MB) as the target molecule to test the Fe-Cu-0.8 alloy in the presence of hydrogen peroxide while monitoring the reaction with UV-Vis spectroscopy. After 60 minutes, the Fe-Cu-0.8 alloy decolorized MB to 95% at pH 4. Kinetic analysis confirmed that this was a first order reaction. In the second part of the experiment, we determined that the Fe-Cu-0.8 alloy can also degrade p-Nitrophenol under the same reaction conditions. Finally, we determined the best conditions for reaction and repeated the experiment 5 times to confirm that the Fe-Cu-0.8 can be recycled. Our results suggest that the Fe-Cu-0.8 alloy may be a good candidate for AOP catalytic degradation of dyes and other organic pollutants.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1奈米科技 1
1-2研究動機 3
第二章 儀器原理 4
2-1 紫外/可見光譜 4
2-1-1紫外/可見光譜(Ultraviolet-Visible Spectrometry,UV-Vis) 4
2-1-2 比爾定律(Beer’s Law) 5
2-1-3使用儀器與參數設定 7
2-2 X-ray 粉末繞射儀 7
2-2-1 X光粉末繞射 7
2-2-2 X-ray 繞射原理 8
2-2-3 使用儀器與參數設定 9
2-3穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM ) 10
2-3-1 TEM工作原理 10
2-3-2 TEM成像機制 10
2-3-3 使用儀器與參數設定 11
2-4 分析儀器 11
第三章 製備不同比例的銅鐵合金對亞甲基藍降解的反應探討 13
3-1. 前言 13
3-2 文獻回顧 14
3-2-1 廢水處理方式 14
3-2-2 芬頓反應(Fenton reaction) 18
3-2-3 類芬頓反應(Fenton-like reactions) 18
3-2-4 染料(Dye) 19
3-2-5雙金屬合金 21
3-2-6磁性奈米粒子 22
3-3 實驗部分 24
3-3-1 實驗藥品 24
3-3-2 實驗步驟 24
3-4 實驗結果 26
3-4-1 氧化銅/氧化鐵雙金屬奈米粒子的應用和特徵分析 26
3-4-2 亞甲基藍降解測試 27
3-4-3 亞甲基藍降解結果與討論 29
3-4-4反應動力學分析(Kinetics of Fenton reaction) 33
3-4-5 Fe-Cu-0.8的特徵分析 35
3-4-6亞甲基藍的降解機制 41
3-5 結論 43
第四章 以雙金屬合金Fe-Cu-0.8透過高級氧化程序降解對硝基苯酚 44
4-1. 前言 44
4-2. 文獻回顧 44
4-2-1 對硝基苯酚 44
4-3 實驗部分 45
4-3-1 實驗藥品 45
4-3-2 實驗步驟 46
4-4 實驗結果 47
4-4-1對硝基苯酚催化測試 47
4-4-2反應動力學分析(Kinetics of Fenton reaction) 53
4-4-3 Fe-Cu-0.8降解對硝基苯酚重複使用性探討 55
4-4-4對硝基苯酚可能的降解反應機制 55
4-4-5結論 57
第五章 結論 58
參考文獻 59



圖目錄
圖2-1 電磁波頻譜範圍 4
圖2-2 UV光譜電子躍遷示意圖 5
圖2-3 X光粉末繞射偵測過程 7
圖2-4二維XRD圖形 8
圖2-5布拉格繞射示意圖 9
圖3-1為高級氧化程序的優缺點 15
圖3-2 廢水處理的相關技術和優缺點 17
圖3-3亞甲基藍分子結構 20
圖3-4亞甲基藍UV-Vis吸收特徵圖 21
圖3-5 氧化銅奈米粒子製備示意圖 25
圖3-6氧化銅奈米粒子製備示意圖 25
圖3-7氧化銅/氧化鐵雙金屬合金 26
圖3-8亞甲基藍消色實驗示意圖 27
圖3-9透過不同催化劑進行亞甲基藍的降解(a)H202/MB(b)CuO (c)Fe3O4 (d)Fe-Cu-0.02 (e)Fe-Cu-0.08 (f)Fe-Cu-0.32 (g)Fe-Cu-0.8 (h)CuO/Fe3O4 28
圖3-10不同合金在pH4,3.5% H2O2進行催化效率的比較 30
圖3-11透過不同催化劑進行亞甲基藍的降解(a)H202/MB(b)CuO (c)Fe3O4(d)Fe-Cu-0.8 32
圖3-12不同合金在pH4,3.5% H2O2進行催化效率的比較 32
圖3-13以lnC/C0對時間(min)作圖,(a)CuO(b)Fe3O4(c)Fe-cu-0.02(d)Fe-Cu-0.08(e)Fe-Cu-0.32(f)Fe-Cu-0.80(g)CuO/Fe3O4 34
圖3-14實驗所製備的氧化鐵奈米粒子XRD繞射圖譜 36
圖3-15實驗所製備的Fe-Cu-0.8奈米粒子XRD繞射圖譜 37
圖3-16(a)Fe-Cu-0.8奈米粒子TEM (b)(c)Fe-Cu-0.8奈米粒子HRTEM 37
圖3-17 Fe-Cu-0.8的Cu 2p的光電子光譜圖(a)CuO(b)反應前Fe-Cu-0.8(c)反應後Fe-Cu-0.8 38
圖3-18 Fe-Cu-0.8的Fe 2p的光電子光譜圖(a)Fe3O4(b)反應前Fe-Cu-0.8(c)反應後Fe-Cu-0.8 39
圖3-19殘留在Fe-Cu-0.8表面S 2p訊號圖譜 40
圖3-20 Fe-Cu-0.8磁滯曲線圖 41
圖3-21亞甲基藍的降解機制 42
圖4-1為對硝基苯酚結構 45
圖4-2降解PNP的反應過程示意圖 46
圖4- 3PNP降解UV-VIS圖譜 47
圖4-4透過不同催化劑進行對硝基苯酚的催化(a)H202/MB(b)CuO (c)Fe3O4 (d)Fe-Cu-0.8 48
圖4-5不同合金在pH4.9,0.1 % H2O2對PNP進行催化效率的比較 49
圖4-6改變不同反應環境條件參數,觀察Fe-Cu-0.8對PNP催化降解的影響 50
圖4-7在不同反應條件下降解有機分子PNP對時間做圖 51
圖4-8以lnC/C0對時間(min)作圖,在不同反應條件下降解有機分子PNP對時間做圖 54
圖4-9 Fe-Cu-0.8重複使用性探討 55
圖4-10 PNP可能降解的機制圖 56


表目錄
表3-1透過不同催化劑以高級氧化處理法的方式氧化不同的有機汙染物 17
表3-2實驗所需要品列表 24
表3-3雙金屬合金中所含銅與鐵百分比 27
表3-4 Kinetics v.s. dynamics 35
表4-1實驗所需要品列表 46
表4- 2 Fe-Cu-0.8降解對硝基苯酚反應前後pH值變化 52
表4-3 Kinetics v.s. dynamics 54
參考文獻 References
1. Bhushan, B., Nanotribology, Nanomechanics and Nanomaterials Characterization. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2008, 366, 1351-1381.
2. Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K., Monitoring of Batch Processes Using Spectroscopy. AlChE J. 2002, 48, 2283-2297.
3. Douglas A. Skook, D. M. W., F. James Holler and Stanley R. Crouch, Fundamentals of Analytic Chemistry. 786-787.
4. Caldeira, A. O.; Leggett, A. J., Influence of Dissipation on Quantum Tunneling in Macroscopic Systems. Phys. Rev. Lett. 1981, 46, 211.
5. Pan, W.; Zhang, G.; Zheng, T.; Wang, P., Degradation of P-Nitrophenol Using Cuo/Al 2 O 3 as a Fenton-Like Catalyst under Microwave Irradiation. RSC Advances 2015, 5, 27043-27051.
6. Yang, L.; Luo, S.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q., High Efficient Photocatalytic Degradation of P-Nitrophenol on a Unique Cu2o/Tio2 Pn Heterojunction Network Catalyst. Environmental science & technology 2010, 44, 7641-7646.
7. Li, L.; Yang, C.; Lan, W.; Xie, S.; Qiao, C.; Liu, J., Removal of Methyl Parathion from Artificial Off-Gas Using a Bioreactor Containing a Constructed Microbial Consortium. Environmental science & technology 2008, 42, 2136-2141.
8. Norrish, K.; Taylor, R. M., Quantitative Analysis by X-Ray Diffraction. Clay Miner. Bull 1962, 5, 98-109.
9. Bragg, W. L., The Diffraction of Short Electromagnetic Waves by a Crystal. 1929.
10. Egerton, R., Physical Principles of Electron Microscopy: An Introduction to Tem, Sem, and Aem; Springer Science & Business Media, 2006.
11. Pan, L.; Tang, J.; Wang, F., Facile Synthesis of Nanoscaled Α-Fe2o3, Cuo and Cuo/Fe2o3 Hybrid Oxides and Their Electrocatalytic and Photocatalytic Properties. Open Chemistry 2013, 11, 763-773.
12. Ensing, B.; Buda, F.; Blöchl, P.; Baerends, E. J., Chemical Involvement of Solvent Water Molecules in Elementary Steps of the Fenton Oxidation Reaction. Angew. Chem. Int. Ed. 2001, 40, 2893-2895.
13. Zhang, G.; Wang, S.; Yang, F., Efficient Adsorption and Combined Heterogeneous/Homogeneous Fenton Oxidation of Amaranth Using Supported Nano-Feooh as Cathodic Catalysts. The Journal of Physical Chemistry C 2012, 116, 3623-3634.
14. Sundrarajan, M.; Vishnu, G.; Joseph, K., Ozonation of Light-Shaded Exhausted Reactive Dye Bath for Reuse. Dyes and Pigments 2007, 75, 273-278.
15. Rai, H. S.; Bhattacharyya, M. S.; Singh, J.; Bansal, T.; Vats, P.; Banerjee, U., Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Critical reviews in environmental science and technology 2005, 35, 219-238.
16. Shimizu, Y.; Okuno, Y.-I.; Uryu, K.; Ohtsubo, S.; Watanabe, A., Filtration Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment. Water Res. 1996, 30, 2385-2392.
17. Luck, F., Wet Air Oxidation: Past, Present and Future. Catal. Today 1999, 53, 81-91.
18. Lin, S. H.; Peng, C. F., Treatment of Textile Wastewater by Electrochemical Method. Water Res. 1994, 28, 277-282.
19. Medina, M.; Neis, U., Symbiotic Algal Bacterial Wastewater Treatment: Effect of Food to Microorganism Ratio and Hydraulic Retention Time on the Process Performance. Water Sci. Technol. 2007, 55, 165-171.
20. Morita, M.; Ito, R.; Kamidate, T.; Watanabe, H., Kinetics of Peroxidase Catalyzed Decoloration of Orange Ii. With Hydrogen Peroxide. Textile research journal 1996, 66, 470-473.
21. Chauhan, A.; Pandey, G.; Sharma, N. K.; Paul, D.; Pandey, J.; Jain, R. K., P-Nitrophenol Degradation Via 4-Nitrocatechol in Burkholderia Sp. Sj98 and Cloning of Some of the Lower Pathway Genes. Environmental science & technology 2010, 44, 3435-3441.
22. Yi, S.; Zhuang, W.-Q.; Wu, B.; Tay, S. T.-L.; Tay, J.-H., Biodegradation of P-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor. Environmental science & technology 2006, 40, 2396-2401.
23. Labana, S.; Pandey, G.; Paul, D.; Sharma, N. K.; Basu, A.; Jain, R. K., Pot and Field Studies on Bioremediation of P-Nitrophenol Contaminated Soil Using Arthrobacter Protophormiae Rkj100. Environmental science & technology 2005, 39, 3330-3337.
24. Priambodo, R.; Shih, Y.-J.; Huang, Y.-J.; Huang, Y.-H., Treatment of Real Wastewater Using Semi Batch (Photo)-Electro-Fenton Method. Sustainable Environment Research 2011, 21.
25. Kwon, B.-G.; Lee, J. H., Determination of Hydroperoxyl/Superoxide Anion Radical (Ho 2·/O 2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method. Bull. Korean Chem. Soc. 2006, 27, 1785-1790.
26. Haber, F.; Weiss, J., ber Die Katalyse Des Hydroperoxydes. Naturwissenschaften 1932, 20, 948-950.
27. Sinfelt, J. H., Bimetallic Catalysts: Discoveries, Concepts, and Applications; Wiley-Interscience, 1983; Vol. 7.
28. Cesaro, A.; Naddeo, V.; Belgiorno, V., Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. Journal of Bioremediation & Biodegradation 2013, 2013.
29. Kalra, S. S.; Mohan, S.; Sinha, A.; Singh, G. In Advanced Oxidation Processes for Treatment of Textile and Dye Wastewater: A Review, 2nd International conference on environmental science and development, IACSIT Press Singapore: 2011; pp 271-5.
30. Ghosh, D.; Bhattacharyya, K. G., Adsorption of Methylene Blue on Kaolinite. Applied Clay Science 2002, 20, 295-300.
31. Tan, I.; Ahmad, A. L.; Hameed, B., Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 2008, 154, 337-346.
32. Kamaruddin, M.; Yusoff, M.; Aziz, H.; Akinbile, C., Recent Developments of Textile Waste Water Treatment by Adsorption Process: A Review. Int. J. Sci. Res. Knowledge 2013, 1, 60-73.
33. Crini, G., Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061-1085.
34. Feng, J.; Hu, X.; Yue, P. L., Novel Bentonite Clay-Based Fe-Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange Ii. Environmental science & technology 2004, 38, 269-275.
35. Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Improved Pd-on-Au Bimetallic Nanoparticle Catalysts for Aqueous-Phase Trichloroethene Hydrodechlorination. Applied Catalysis B: Environmental 2006, 69, 115-125.
36. Yang, L.; Shen, Y.; Xie, A.; Liang, J.; Zhang, B., Synthesis of Se Nanoparticles by Using Tsa Ion and Its Photocatalytic Application for Decolorization of Cango Red under Uv Irradiation. Mater. Res. Bull. 2008, 43, 572-582.
37. Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M., Iron-Nickel Bimetallic Nanoparticles for Reductive Degradation of Azo Dye Orange G in Aqueous Solution. Applied Catalysis B: Environmental 2008, 79, 270-278.
38. Andreozzi, R.; Caprio, V.; Marotta, R., Oxidation of 3, 4-Dihydroxybenzoic Acid by Means of Hydrogen Peroxide in Aqueous Goethite Slurry. Water Res. 2002, 36, 2761-2768.
39. Lu, M.-C.; Chen, J.-N.; Huang, H.-H., Role of Goethite Dissolution in the Oxidation of 2-Chlorophenol with Hydrogen Peroxide. Chemosphere 2002, 46, 131-136.
40. Muthuvel, I.; Swaminathan, M., Highly Solar Active Fe (Iii) Immobilised Alumina for the Degradation of Acid Violet 7. Sol. Energy Mater. Sol. Cells 2008, 92, 857-863.
41. Andreozzi, R.; D’Apuzzo, A.; Marotta, R., Oxidation of Aromatic Substrates in Water/Goethite Slurry by Means of Hydrogen Peroxide. Water Res. 2002, 36, 4691-4698.
42. Kremer, M. L., The Fenton Reaction. Dependence of the Rate on Ph. The Journal of Physical Chemistry A 2003, 107, 1734-1741.
43. Awasthi, R.; Tewari, R.; Nayyar, H., Synergy between Plants and P-Solubilizing Microbes in Soils: Effects on Growth and Physiology of Crops. International Research Journal of Microbiology 2011, 2, 484-503.
44. Kehrer, J. P., The Haber–Weiss Reaction and Mechanisms of Toxicity. Toxicology 2000, 149, 43-50.
45. He, Z.; Gao, C.; Qian, M.; Shi, Y.; Chen, J.; Song, S., Electro-Fenton Process Catalyzed by Fe3o4 Magnetic Nanoparticles for Degradation of Ci Reactive Blue 19 in Aqueous Solution: Operating Conditions, Influence, and Mechanism. Industrial & Engineering Chemistry Research 2014, 53, 3435-3447.
46. Yu, W.; Porosoff, M. D.; Chen, J. G., Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780-5817.
47. Lin, S.-S.; Gurol, M. D., Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environmental Science & Technology 1998, 32, 1417-1423.
48. Ai, Z.; Lu, L.; Li, J.; Zhang, L.; Qiu, J.; Wu, M., Fe@ Fe2o3 Core-Shell Nanowires as Iron Reagent. 1. Efficient Degradation of Rhodamine B by a Novel Sono-Fenton Process. The Journal of Physical Chemistry C 2007, 111, 4087-4093.
49. Xue, X.; Hanna, K.; Deng, N., Fenton-Like Oxidation of Rhodamine B in the Presence of Two Types of Iron (Ii, Iii) Oxide. J. Hazard. Mater. 2009, 166, 407-414.
50. Gupta, V., Application of Low-Cost Adsorbents for Dye Removal–a Review. Journal of environmental management 2009, 90, 2313-2342.
51. Kakisawa, H.; Minagawa, K.; Halada, K., Tensile Behavior Change Depending on the Microstructure of a Fe–Cu Alloy Produced from Rapidly Solidified Powder. Materials Science and Engineering: A 2003, 340, 175-180.
52. Burg, A.; Shamir, D.; Shusterman, I.; Kornweitz, H.; Meyerstein, D., The Role of Carbonate as a Catalyst of Fenton-Like Reactions in Aop Processes: Co 3˙− as the Active Intermediate. Chem. Commun. 2014, 50, 13096-13099.
53. Iboukhoulef, H.; Amrane, A.; Kadi, H., Microwave-Enhanced Fenton-Like System, Cu (Ii)/H2o2, for Olive Mill Wastewater Treatment. Environ. Technol. 2013, 34, 853-860.
54. Hsieh, S.; Lin, P.-Y., Fept Nanoparticles as Heterogeneous Fenton-Like Catalysts for Hydrogen Peroxide Decomposition and the Decolorization of Methylene Blue. J. Nanopart. Res. 2012, 14, 1-10.
55. Juster, N. J., Color and Chemical Constitution. J. Chem. Educ 1962, 39, 596.
56. Barnes, P., Proposed Classification for Pigments. Pigment & Resin Technology 1972, 1, 13-20.
57. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by Uv-Irradiated Titania. Applied Catalysis B: Environmental 2002, 39, 75-90.
58. Tan, I.; Ahmad, A.; Hameed, B., Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies. Desalination 2008, 225, 13-28.
59. Goluboff, N.; Wheaton, R., Methylene Blue Induced Cyanosis and Acutehemolytic Anemia Complicating the Treatment of Methemoglobinemia. The Journal of pediatrics 1961, 58, 86-89.
60. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J., Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93, 156801.
61. Barnett, A. E.; Dembinski, G. W.; Sinfelt, J. H., Isomerization Process Utilizing a Gold-Palladium Alloy in the Catalyst. Google Patents: 1969.
62. Chen, J. G.; Menning, C. A.; Zellner, M. B., Monolayer Bimetallic Surfaces: Experimental and Theoretical Studies of Trends in Electronic and Chemical Properties. Surf. Sci. Rep. 2008, 63, 201-254.
63. Tsang, S. C.; Caps, V.; Paraskevas, I.; Chadwick, D.; Thompsett, D., Magnetically Separable, Carbon‐Supported Nanocatalysts for the Manufacture of Fine Chemicals. Angew. Chem. 2004, 116, 5763-5767.
64. Huang, J.; Yu, Y.; Wu, Y.; Ye, H.; Dong, Z., Thermal Decomposition of Mechanically Alloyed Nanocrystalline Fcc Fe 60 Cu 40. J. Mater. Res. 1996, 11, 2717-2724.
65. Abbate, M.; Schreiner, W.; Grandi, T.; de Lima, J., Evidence of Chemical Bonding in the Electronic Structure of a Metastable Fe80cu20 Alloy. J. Phys.: Condens. Matter 2001, 13, 5723.
66. Fultz, B.; Ahn, C.; Spooner, S.; Hong, L.; Eckert, J.; Johnson, W., Incipient Chemical Instabilities of Nanophase Fe-Cu Alloys Prepared by Mechanical Alloying. Metallurgical and Materials Transactions A 1996, 27, 2934-2946.
67. Carnes, C. L.; Klabunde, K. J., The Catalytic Methanol Synthesis over Nanoparticle Metal Oxide Catalysts. J. Mol. Catal. A: Chem. 2003, 194, 227-236.
68. Maksimuk, S.; Yang, S.; Peng, Z.; Yang, H., Synthesis and Characterization of Ordered Intermetallic Ptpb Nanorods. J. Am. Chem. Soc. 2007, 129, 8684-8685.
69. Li, Y.; Liang, J.; Tao, Z.; Chen, J., Cuo Particles and Plates: Synthesis and Gas-Sensor Application. Mater. Res. Bull. 2008, 43, 2380-2385.
70. Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M., Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus Species. Nanotechnology 2003, 14, 824.
71. Liu, R.; Chiu, H.; Shiau, C.-S.; Yeh, R. Y.-L.; Hung, Y.-T., Degradation and Sludge Production of Textile Dyes by Fenton and Photo-Fenton Processes. Dyes and Pigments 2007, 73, 1-6.
72. Wasserscheid, P.; Keim, W., Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772-3789.
73. Sinfelt, J. H., Catalysis by Alloys and Bimetallic Clusters. Acc. Chem. Res. 1977, 10, 15-20.
74. Gupta, A. K.; Gupta, M., Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995-4021.
75. Li, Z.; Wei, L.; Gao, M.; Lei, H., One‐Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles. Adv. Mater. 2005, 17, 1001-1005.
76. Varshney, M.; Li, Y., Interdigitated Array Microelectrode Based Impedance Biosensor Coupled with Magnetic Nanoparticle–Antibody Conjugates for Detection of Escherichia Coli O157: H7 in Food Samples. Biosens. Bioelectron. 2007, 22, 2408-2414.
77. Chertok, B.; Moffat, B. A.; David, A. E.; Yu, F.; Bergemann, C.; Ross, B. D.; Yang, V. C., Iron Oxide Nanoparticles as a Drug Delivery Vehicle for Mri Monitored Magnetic Targeting of Brain Tumors. Biomaterials 2008, 29, 487-496.
78. Lu, A. H.; Salabas, E. e. L.; Schüth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.
79. Kodama, R., Magnetic Nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359-372.
80. Freedman, T. B.; Nafie, L. A.; Keiderling, T. A., Vibrational Optical Activity of Oligopeptides. Biopolymers 1995, 37, 265-279.
81. Pant, R.; Krishna, R.; Singh, D.; Srinivas, D.; Mehta, R., Variable Temperature Electron Paramagnetic Resonance Investigations of a Kerosene-Based Magnetic Fluid. J. Magn. Magn. Mater. 1996, 164, 143-146.
82. Chen, F.; Gao, Q.; Ni, J., The Grafting and Release Behavior of Doxorubincin from Fe3o4@ Sio2 Core–Shell Structure Nanoparticles Via an Acid Cleaving Amide Bond: The Potential for Magnetic Targeting Drug Delivery. Nanotechnology 2008, 19, 165103.
83. Deschamps, A.; Militzer, M.; Poole, W., Precipitation Kinetics and Strengthening of a Fe-0.8 Wt% Cu Alloy. ISIJ Int. 2001, 41, 196-205.
84. Ko, J.; Lim, H. B., Multicore Magnetic Nanoparticles (Mmnps) Doped with Cs and Fitc for the Determination of Biomarker in Serum Using Icp-Ms. Anal. Chem. 2014, 86, 4140-4144.
85. Yao, Y.; Cai, Y.; Wu, G.; Wei, F.; Li, X.; Chen, H.; Wang, S., Sulfate Radicals Induced from Peroxymonosulfate by Cobalt Manganese Oxides (Coxmn 3− X O 4) for Fenton-Like Reaction in Water. J. Hazard. Mater. 2015, 296, 128-137.
86. Wang, A.; Liu, X. Y.; Mou, C.-Y.; Zhang, T., Understanding the Synergistic Effects of Gold Bimetallic Catalysts. J. Catal. 2013, 308, 258-271.
87. Gogate, P. R.; Pandit, A. B., A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions. Advances in Environmental Research 2004, 8, 501-551.
88. Zhang, Y.; Deng, J.; He, C.; Huang, S.; Tian, S.; Xiong, Y., Application of Fe2v4o13 as a New Multi‐Metal Heterogeneous Fenton‐Like Catalyst for the Degradation of Organic Pollutants. Environ. Technol. 2010, 31, 145-154.
89. Gallard, H.; De Laat, J.; Legube, B., Etude Comparative De La Vitesse De Décomposition De H2o2 Et De L'atrazine Par Les Systèmes Fe (Iii)/H2o2, Cu (Ii)/H2o2 Et Fe (Iii)/Cu (Ii)/H2o2. Revue des sciences de l'eau/Journal of Water Science 1999, 12, 713-728.
90. QI, Y.-Y.; SUN, X.-H.; CHANG, X.-M.; KANG, R.; LIU, K.-Q.; FANG, Y., A New Fluorescent Derivative of 1, 4-Bis (Phenylethynyl) Benzene with 8-Hydroxyquinoline as a Capturing Unit and Cholesterol as an Auxiliary Structure: Optical Behavior and Sensing Applications.
91. Cai, C.; Zhang, H.; Zhong, X.; Hou, L., Ultrasound Enhanced Heterogeneous Activation of Peroxymonosulfate by a Bimetallic Fe–Co/Sba-15 Catalyst for the Degradation of Orange Ii in Water. J. Hazard. Mater. 2015, 283, 70-79.
92. Zepp, R. G.; Faust, B. C.; Hoigne, J., Hydroxyl Radical Formation in Aqueous Reactions (Ph 3-8) of Iron (Ii) with Hydrogen Peroxide: The Photo-Fenton Reaction. Environmental Science & Technology 1992, 26, 313-319.
93. Zhu, M.; Meng, D.; Wang, C.; Di, J.; Diao, G., Degradation of Methylene Blue with H 2 O 2 over a Cupric Oxide Nanosheet Catalyst. Chinese Journal of Catalysis 2013, 34, 2125-2129.
94. Sun, S.; Zhang, X.; Zhang, J.; Wang, L.; Song, X.; Yang, Z., Surfactant-Free Cuo Mesocrystals with Controllable Dimensions: Green Ordered-Aggregation-Driven Synthesis, Formation Mechanism and Their Photochemical Performances. CrystEngComm 2013, 15, 867-877.
95. Inoishi, A.; Ida, S.; Uratani, S.; Okano, T.; Ishihara, T., High Capacity of an Fe–Air Rechargeable Battery Using Lagao 3-Based Oxide Ion Conductor as an Electrolyte. PCCP 2012, 14, 12818-12822.
96. Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M. R., Reduction of Aromatic Nitro Compounds Catalyzed by Biogenic Cuo Nanoparticles. RSC Advances 2014, 4, 53229-53236.
97. Du, N.; Xu, Y.; Zhang, H.; Zhai, C.; Yang, D., Selective Synthesis of Fe2o3 and Fe3o4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires. Nanoscale research letters 2010, 5, 1295-1300.
98. Hong, Z.-s.; Cao, Y.; Deng, J.-f., A Convenient Alcohothermal Approach for Low Temperature Synthesis of Cuo Nanoparticles. Mater. Lett. 2002, 52, 34-38.
99. Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J., Complete Destruction of P-Nitrophenol in Aqueous Medium by Electro-Fenton Method. Environmental Science & Technology 2000, 34, 3474-3479.
100. Hauber, J.; Singer, T., Studies on Succinate Dehydrogenase. Eur. J. Biochem. 1967, 3, 107-116.
101. Xu, W.; Aydin, M.; Zakia, S.; Akins, D. L., Aggregation of Thionine within Almcm-48. The Journal of Physical Chemistry B 2004, 108, 5588-5593.
102. Steiner, G.; Sablinskas, V.; Kitsche, M.; Salzer, R., Polarization Modulation-Infrared Reflection Absorption Spectroscopic Mapping. Anal. Chem. 2006, 78, 2487-2493.
103. Roduner, E., Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583-592.
104. Xuan, S.; Wang, Y.-X. J.; Yu, J. C.; Cham-Fai Leung, K., Tuning the Grain Size and Particle Size of Superparamagnetic Fe3o4 Microparticles. Chem. Mater. 2009, 21, 5079-5087.
105. Wang, Q.; Tian, S.; Ning, P., Degradation Mechanism of Methylene Blue in a Heterogeneous Fenton-Like Reaction Catalyzed by Ferrocene. Industrial & Engineering Chemistry Research 2013, 53, 643-649.
106. Xia, S.; Zhang, L.; Pan, G.; Qian, P.; Ni, Z., Photocatalytic Degradation of Methylene Blue with a Nanocomposite System: Synthesis, Photocatalysis and Degradation Pathways. PCCP 2015, 17, 5345-5351.
107. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic Degradation Pathway of Methylene Blue in Water. Applied Catalysis B: Environmental 2001, 31, 145-157.
108. Chang, M.-W.; Chen, T.-S.; Chern, J.-M., Initial Degradation Rate of P-Nitrophenol in Aqueous Solution by Fenton Reaction. Industrial & Engineering Chemistry Research 2008, 47, 8533-8541.
109. Du, Y.; Chen, H.; Chen, R.; Xu, N., Synthesis of P-Aminophenol from P-Nitrophenol over Nano-Sized Nickel Catalysts. Applied Catalysis A: General 2004, 277, 259-264.
110. Corbett, J. F., An Historical Review of the Use of Dye Precursors in the Formulation of Commercial Oxidation Hair Dyes. Dyes and Pigments 1999, 41, 127-136.
111. Javaid, R.; Kawasaki, S.-i.; Suzuki, A.; Suzuki, T. M., Simple and Rapid Hydrogenation of P-Nitrophenol with Aqueous Formic Acid in Catalytic Flow Reactors. Beilstein journal of organic chemistry 2013, 9, 1156-1163.
112. Pignatello, J. J.; Oliveros, E.; MacKay, A., Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical reviews in environmental science and technology 2006, 36, 1-84.
113. Guo, J.-Z.; Li, B.; Liu, L.; Lv, K., Removal of Methylene Blue from Aqueous Solutions by Chemically Modified Bamboo. Chemosphere 2014, 111, 225-231.
114. Lee, J.-J., Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon. Applied Chemistry for Engineering 2014, 25, 632-638.
115. Oh, S.; Kang, M.; Cho, C.; Lee, M., Detection of Carcinogenic Amines from Dyestuffs or Dyed Substrates. Dyes and Pigments 1997, 33, 119-135.
116. Brinkmann, T.; Hörsch, P.; Sartorius, D.; Frimmel, F. H., Photoformation of Low-Molecular-Weight Organic Acids from Brown Water Dissolved Organic Matter. Environmental science & technology 2003, 37, 4190-4198.
117. Wang, C.-T.; Chou, W.-L.; Chung, M.-H.; Kuo, Y.-M., Cod Removal from Real Dyeing Wastewater by Electro-Fenton Technology Using an Activated Carbon Fiber Cathode. Desalination 2010, 253, 129-134.
118. Pignatello, J. J.; Liu, D.; Huston, P., Evidence for an Additional Oxidant in the Photoassisted Fenton Reaction. Environmental Science & Technology 1999, 33, 1832-1839.
119. Sun, S.-P.; Lemley, A. T., P-Nitrophenol Degradation by a Heterogeneous Fenton-Like Reaction on Nano-Magnetite: Process Optimization, Kinetics, and Degradation Pathways. J. Mol. Catal. A: Chem. 2011, 349, 71-79.
120. 潘维倩; 张广山; 郑彤; 张洁; 王鹏, 微波耦合类 Fenton 处理水中对硝基苯酚. 中国环境科学 2014, 3112-3118.
121. Zoetemeyer, R.; Van den Heuvel, J.; Cohen, A., Ph Influence on Acidogenic Dissimilation of Glucose in an Anaerobic Digestor. Water Res. 1982, 16, 303-311.
122. Ruan, C.; Eres, G.; Wang, W.; Zhang, Z.; Gu, B., Controlled Fabrication of Nanopillar Arrays as Active Substrates for Surface-Enhanced Raman Spectroscopy. Langmuir 2007, 23, 5757-5760.
123. Quester, K.; Avalos-Borja, M.; Vilchis-Nestor, A. R.; Camacho-López, M. A.; Castro-Longoria, E., Sers Properties of Different Sized and Shaped Gold Nanoparticles Biosynthesized under Different Environmental Conditions by Neurospora Crassa Extract. PloS one 2013, 8, e77486.
124. Yang, Y.; Wang, P.; Shi, S.; Liu, Y., Microwave Enhanced Fenton-Like Process for the Treatment of High Concentration Pharmaceutical Wastewater. J. Hazard. Mater. 2009, 168, 238-245.
125. Huang, C.; Dong, C.; Tang, Z., Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manage. (Oxford) 1993, 13, 361-377.
126. Neyens, E.; Baeyens, J., A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. J. Hazard. Mater. 2003, 98, 33-50.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.8.34
論文開放下載的時間是 校外不公開

Your IP address is 52.14.8.34
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code