Responsive image
博碩士論文 etd-0709116-112742 詳細資訊
Title page for etd-0709116-112742
論文名稱
Title
在有微小型細胞嵌入的大型細胞扇形網路上建立數學分析模型
An Analytic Model for a Small-cell Embedded Large-cell Sectored Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-09
關鍵字
Keywords
連線中斷機率、馬可夫鏈、FFR、換手率、扇形區域、Small cell
blocking and dropping probability, FFR, handoff rate, sector, small cell, Markov chains
統計
Statistics
本論文已被瀏覽 5841 次,被下載 33
The thesis/dissertation has been browsed 5841 times, has been downloaded 33 times.
中文摘要
本論文提出一個小型細胞嵌入大型細胞的扇形網路(Small-cell Embedded Large-cell Sectored Networks, SELSN)的網路架構,一SELSN可以分為sector和small cell兩個區域,我們使用部分頻率復用(Fractional Frequency Reuse, FFR)的方法來增加整體系統的通道(channels)總數,並依照sector的個數為奇數或偶數分別將頻寬分成三段或兩段。為了分析所提出的SELSN的new calls (NC)和handoff calls (HC)的連線中斷機率,我們使用馬可夫鏈建立數學模型,在數學模型中,我們透過一個行動裝置(mobile station, MS)所在sector和small cell的面積和邊界長度、MS的移動速度和方向推導出HC的換手率(handoff rate)。從HC的換手率中,我們推導出馬可夫鏈的狀態轉移矩陣以求得每個狀態的機率,最後我們藉著改變一個small cell的半徑大小、sector的個數、MS的移動速度來比較分析NC和HC的連線中斷機率,從連線中斷機率中,我們求得MS的平均等待時間(average waiting time, AWT)和整體系統的產出(throughput)。
Abstract
In this thesis, we propose a small-cell embedded large-cell sectored network (SELSN) architecture. An SELSN can be divided into two regions, the sector and the small cell. We increase the total number of overall system channels by using fractional frequency reuse (FFR), and divide the bandwidth into two or three sections depending on whether the number of sectors is even or odd. In order to analyze the new-call (NC) blocking and handoff-call (HC) dropping probability of the proposed SELSN, we build a mathematical model of Markov chains. In the mathematical model, we derive the handoff rate from HC by the area and the boundary length where a mobile station (MS) stays, and the speed and the direction of an MS. Based on the handoff rate of HC, we derive the Markov chain’s transition matrix to obtain the probability of each state. Finally, we change the size of a small cell’s radius, the number of the sectors, and the speed of MS to analyze the NC blocking and the HC dropping probability. From the two probabilities, we obtain the average waiting time (AWT) of an MS and the throughput of the overall system.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖表目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 章節介紹 2
第二章 小型細胞嵌入大型細胞的扇形網路 3
2.1 SELSN之架構 3
2.2 FFR 4
2.3 New Call和Handoff Call的換手率 6
2.4 相關研究 8
2.5 本論文所提出的SELSN 12
第三章 建立馬可夫鏈的數學模型 13
3.1 系統架構 13
3.2 UE在small-cell與sector之間的換手率 15
3.3 馬可夫數學模型的建立 17
3.3.1 數學模型的假設 18
3.3.2 Arrival Rate和Departure Rate 18
3.3.3 馬可夫鏈狀態計算 31
3.4 效能參數的推導 36
3.4.1 Blocking與Dropping機率 36
3.4.2 Average Waiting Time 39
3.4.3 Normalized Throughput 44
第四章 數學分析與結果討論 50
4.1 效能參數的設定 50
4.2 數值結果與分析 51
4.2.1 固定small cell的半徑 51
4.2.1.1 NC被block的機率 51
4.2.1.2 HC被drop的機率 53
4.2.2 改變small cell的半徑與sector的數目 56
4.2.2.1 MS的AWT 57
4.2.2.2 Sector和Small-cell的NT 60
4.2.3 實驗結果摘要 62
第五章 結論與未來工作 64
5.1 結論 64
5.2 遭遇的困難 64
5.3 未來工作 65
References 66
Acronyms 72
Index 73
參考文獻 References
[1] H. Xie and S. Kuek. “Priority Handoff Analysis,” 43rd IEEE Vehicular Technology Conference, pp. 855-858, Secaucus, New Jersey, USA, 18-20, May 1993.
[2] D. Hong and S. S. Rappaport, “Traffic Model and Performance Analysis for Cellular Mobile Radio Telephone Systems with Prioritized and Nonprioritized Handoff Procedures,” IEEE Transactions on Vehicular Technology, Vol. 35, no. 3, pp. 77-91, Aug. 1986.
[3] R. Thomas, H. Gilbert, and G. Mazziotto, “Influence of the Movement of the Mobile Station on the Performance of a Radio Cellular Network,” in proc. 3rd Nordic Seminar on Digital Land Mobile Radio Communications, Paper 9.4, Copenhagen, Denmark, 12-15, Sep. 1988.
[4] W. Lee and D. H. Cho, “Enhanced Group Handover Scheme in Multiaccess Networks,” IEEE Transactions on Vehicular Technology, Vol. 60, no. 5, pp. 2389-2395, Jun. 2011.
[5] G. J. Sutton, R. P. Liu, and I. B. Collings, “Modelling IEEE 802.11 DCF Heterogeneous Networks with Rayleigh Fading and Capture,” IEEE Transactions on Communications, Vol. 61, no. 8, pp. 3336-3348, Aug. 2013.
[6] V. V. Paranthaman, G. Mapp, P. Shah, H. X. Nguyen, and A. Ghos, “Exploring Markov Models for the Allocation of Resources for Proactive Handover in a Mobile Environment,” 40th IEEE Local Computer Networks Conference Workshops (LCN 2015), pp. 26-29, Clearwater Beach, Florida, USA, 26-29, Oct. 2015.
[7] W. Lee and D. H. Cho, “Group Handover Scheme Using Adjusted Delay for Multi-Access Networks,” IEEE International Conference on Communications (ICC 2010), pp. 1-5, Cape Town, Republic of South Africa, 23-27, May 2010.
[8] J. Xu, Y. Zhao, and X. Zhu, “Mobility Model Based Handover Algorithm in LTE-Advanced,” 10th International Conference on Natural Computation (ICNC 2014), pp. 230-234, Xiamen, China, 19-21, Aug. 2014.
[9] N. Bagdure and B. Ambudkar, “Reducing Delay During Vertical Handover,” International Conference on Computing Communication Control and Automation (ICCUBEA 2015), pp. 200-204, Pune, India, 26-27, Feb, 2015.
[10] P. H. Tseng, K. T. Feng, and C. H. Huang, “POMDP-Based Cell Selection Schemes for Wireless Networks,” IEEE Communications Letters, Vol. 18, no. 5, pp. 797-800, May, 2014.
[11] R. Hossain, A. H. Real, and A. Rahman, “Handover Management in Heterogeneous Network,” 18th International Conference on Computer and Information Technology (ICCIT 2015), pp. 87-92, Dhaka, Bengal, 21-23 Dec. 2015.
[12] X. Chen, H. Wang, X. Xiang, and C. Gao, “Joint Handover Decision and Channel Allocation for LTE-A Femtocell Networks,” 5th International Conference on Game Theory for Networks (GAMENETS 2014), pp. 1-5, Beijing, China, 25-27, Nov. 2014.
[13] Y. Kim, H. Ko, S. Pack, W. Lee, and X. Shen, “Mobility-Aware Call Admission Control Algorithm With Handoff Queue in Mobile Hotspots” IEEE Transactions on Vehicular Technology, Vol. 62, no. 8, pp. 3903-3912, Oct. 2013.
[14] S. Li, D. Grace, Y. Liu, J. Wei, and D. Ma, “Overlap Area Assisted Call Admission Control Scheme for Communications System,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, no. 4, pp. 2911-2920, Oct. 2011.
[15] S. Y. Kim, S. Ryu, C. H. Cho, and H. W. Lee, “Performance analysis of a cellular network using frequency reuse partitioning,” International Journal on Performance Evaluation, Vol. 70, no. 2, pp. 77-89, Feb. 2013.
[16] M. Z. Chowdhury, Y. M. Jang, and Z. J. Haas, “Call admission control based on adaptive bandwidth allocation for wireless networks” Journal of Communications and Networks, Vol. 15, no. 1, pp. 15-24, Feb. 2013.
[17] P. Fazio, M. Tropea, and S. Marano, “A Distributed Hand-over Management and Pattern Prediction Algorithm for Wireless Networks With Mobile Hosts,” 9th International Wireless Communications and Mobile Computing Conference (IWCMC 2013), pp. 294-298, Sardinia, Italiana, 1-5 Jul. 2013.
[18] F. I. Onah, M. O. Ezeja, and C. I. Ani, “Resource Reservation Technique for Handover Calls using Integrated Modeling Technique,” 8th IEEE Design and Test Symposium, pp. 1-6, Marrakesh, Morocco, 16-18, Dec. 2013.
[19] X. Ge, T. Han, Y. Zhang, G. Mao, C. X. Wang, J. Zhang, B. Yang, and S. Pan, “Spectrum and Energy Efficiency Evaluation of Two-Tier Femtocell Networks With Partially Open Channels,” IEEE Transactions on Vehicular Technology, Vol. 63, no. 3, pp. 1306-1319, Mar. 2014.
[20] A. Roy, J. Shin, and N. Saxena, “Multi-objective handover in LTE macro/femto-cell networks,” Journal of Communications and Networks, Vol. 14, no. 5, pp. 578-587, Oct. 2012.
[21] S. M. A. El-atty and Z. M. Gharsseldien, “On performance of HetNet with coexisting small cell technology,” 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC 2013), pp. 1-8, Dubai, Arab, 23-25, Apr. 2013.
[22] L. B. Le, D. Niyato, E. Hossain, D. I. Kim, and D. T. Hoang, “QoS-Aware and Energy-Efficient Resource Management in OFDMA Femtocells,” IEEE Transactions on Wireless Communications, Vol. 12, no. 1, pp. 180-194, Jan. 2013.
[23] X. Chu, J. Y. Wu, and H. Wang, “Outage Probability Analysis for Collocated SpectrumSharing Macrocell and Femtocells,” IEEE International Conference on Communications (ICC 2011), pp. 1-5, Kyoto, Japan, 5-9, Jun. 2011.
[24] M. Z. Chowdhury and Y. M. Jang, “Call admission control and traffic modeling for integrated macrocell/femtocell networks,” 4th International Conference on Ubiquitous and Future Networks (ICUFN 2012), pp. 272-275, Phuket, Thailand, 4-6, Jul. 2012.
[25] L. B. Le, E. Hossain, D. Niyato, and D. I. Kim, “Mobility-aware Admission Control with QoS Guarantees in OFDMA Femtocell Networks,” IEEE International Conference on Communications (ICC 2013), pp. 2217-2222, Budapest, Hungary, 9-13, Jun. 2013.
[26] F. Jin, R. Zhang, and L. Hanzo, “Frequency-Swapping Aided Femtocells in Twin-Layer Cellular Networks Relying on Fractional Frequency Reuse,” IEEE Wireless Communications and Networking Conference (WCNC 2012), pp. 3097-3101, Shanghai, China, 1-4, Apr. 2012.
[27] J. Ghosh and S. D. Roy, “Performance Improvement of Outage Users at Cell Edges Through Cognitive-Femtocell Deployment Over Macrocell Network,” International Conference on Computational Intelligence and Communication Networks (CICN 2014), pp. 458-462, Bhopal, India, 14-16, Nov. 2014.
[28] J. S. Chen, H. C. Chen, Y. F. Huang, C. C. Wei, and K. C. Chuang, “An adaptive capacity enhancement strategy for sector-based cellular systems,” International Journal on Computers and Mathematics with Applications, Vol. 64, no. 5, pp. 1462-1472, Sep. 2012.
[29] H. Shahzad and H. Taheri, “Resource management based on future traffic estimation and 2-tier structure for 4G cellular network,” International Conference on Information Technology and e-Services (ICITeS 2012), pp. 1-4, Sousse, Tunisian Republic, 24-26, Mar. 2012.
[30] T. L. Sheu, B. J. Lin, and C.G. Ma, “Call Blocking and Dropping in Sectorized Cellular Networks with Fractional Frequency Reuse,” Proceedings of World Telecommunications Congress (WTC 2014), Berlin, Germany, pp. 1-6, 1-3, Jun. 2014.
[31] J. L. Martinez, A. H. Solana, I. Guio, and A. Valdovinos, “Inter-Cell Interference Management in SC-FDMA Cellular Systems,” 73rd IEEE Vehicular Technology Conference (VTC Spring 2011), pp. 1-5, Budapest, Hungary, 15-18, May 2011.
[32] J. L. Martinez, A. H. Solana, and A. Valdovinos, “Sector-Based Radio Resource Management for SC-FDMA Cellular Systems,” 8th International Symposium on Wireless Communication Systems (ISWCS 2011), pp. 750-754, Aachen, Germany, 6-9, Nov. 2011.
[33] J. L. Martinez, A. H. Solana, and A. Valdovinos, “On the Dependence between FPC and ICIC in SC-FDMA Cellular Systems,” IEEE Vehicular Technology Conference (VTC 2012), pp. 1-5, Quebec City, Canada, 3-6, Sep. 2012.
[34] S. Baroudi and Y. R. Shayan, “Outage Probability for a Sector of Circular Cell Based on Path Loss Threshold,” 27th Biennial Symposium on Communications (QBSC 2014), pp. 24-27, Kingston, Ontario, Canada, 1-4, Jun. 2014.
[35] J. Wu, X. Chu, D. L. Pérez, and H. Wang, “Femtocell exclusion regions in hierarchical 3-sector macrocells for co-channel deployments,” 1st IEEE International Conference on Communications in China (ICCC 2012), pp. 541-545, Beijing, China, 15-17, Aug. 2012.
[36] J. Wu, X. Chu, and D. L. Perez, “Downlink Outage Probability of Co-Channel Femtocells in Hierarchical 3-Sector Macrocells,” IEEE Communications Letters, Vol. 16, no. 5, pp. 698-701, May 2012.
[37] H. Kalbkhani, M. G. Shayesteh, S. J. Alamdari, and V. Solouk, “Outage probability of femtocells in two-tier networks with 6-sector macrocells,” 6th International Symposium on Telecommunications (IST 2012), pp. 283-288, Tehran, Iran, 6-8, Nov. 2012.
[38] C. Samal, L. Samal, and S. Das, “By Fractional Frequency Reuse Mitigate Interference in Heterogeneous Femto and Macro Cell Networks,” International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE 2014), pp. 1-5, Coimbatore, Iran, 6-8, Mar. 2014.
[39] C. C. Coskun, K. Davaslioglu, and E. Ayanoglu, “An Energy-Efficient Resource Allocation Algorithm with QoS Constraints for Heterogeneous Networks,” IEEE Global Communications Conference (GLOBECOM 2015), pp. 1-7, San Diego, California, USA, 6-10, Dec. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code