Responsive image
博碩士論文 etd-0709116-120830 詳細資訊
Title page for etd-0709116-120830
論文名稱
Title
含有鋅與錫複合金屬氧化物奈米結構成長於矽金字塔陣列之二氧化碳氣體感測器
Composite Nanomaterials with Zinc and Tin Grown on Silicon Pyramid Arrays for Carbon Dioxide Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-09
關鍵字
Keywords
奈米矽金字塔、水熱法、氣體感測器、氧化鋅錫、氧化鋅、二氧化碳
Nano-pyramid arrays, Zinc oxide, Zinc tin oxide, Hydrothermal method, Gas sensor, Carbon dioxide
統計
Statistics
本論文已被瀏覽 5672 次,被下載 25
The thesis/dissertation has been browsed 5672 times, has been downloaded 25 times.
中文摘要
本論文探討多重奈米結構異質接面(ZnSnO3/ZnO/P-Si)與(Zn2SnO4/ZnO/P-Si) 之二氧化碳(CO2)氣體感測器。首先以氫氧化鉀、異丙醇及去離子水混合之濕蝕刻溶液,將P型(100)矽基板上蝕刻出矽金字塔陣列。透過射頻濺鍍系統(RF Sputtering System)沉積ZnO種晶層,再以水熱合成法於種晶層上合成氧化鋅奈米柱結構。
於具有氧化鋅奈米柱的矽金字塔陣列上,分別以化學溶液腐蝕法與二次水熱合成法形成奈米異質接面結構。前者在氧化鋅奈米柱表面直接腐蝕形成ZnSnO3層,完成ZnSnO3/ZnO結構。後者先在表面合成ZnSn(OH)6 (ZHS),再經由退火轉變成Zn2SnO4微米立方,完成Zn2SnO4/ZnO結構。兩種異質接面再分別蒸鍍金屬鋁(Al)作為金屬接觸電極完成Al/ZnSnO3/ZnO/P-Si/Al以及Al/Zn2SnO4/ZnO/P-Si/Al之元件製作。
利用XRD、EDS、SEM分別對材料進行分析及觀察奈米結構,藉以探討ZnSnO3/ZnO與Zn2SnO4/ZnO奈米異質接面結構的特性及最佳製程選擇。透過電性量測分析,研究矽金字塔奈米陣列結構以及異質接面對二氧化碳氣體感測之影響。矽金字塔奈米結構可有效增加感測氣體接觸之比表面積。而異質接面則使得元件能障上升進而降低漏電流,並且增強對CO2的吸附反應。實驗結果發現,結合兩者可大幅提升元件對二氧化碳氣體的靈敏度。
在2500 ppm二氧化碳環境下,ZnSnO3/ZnO/P-Si的金字塔陣列對氣體之靈敏度為365%,是無蝕刻平面型薄膜元件ZnO/P-Si的4倍。而Zn2SnO4/ZnO/P-Si的金字塔陣列更提高到398%。含有鋅與錫的複合奈米材料能大幅改善二氧化碳氣體感測器的效能,對於應用在室內空氣品質監控與溫室氣體偵測皆具相當大的助益。
Abstract
In this thesis, we develop the heterojunction with nanostructures for CO2 gas sensing applications. Silicon nano-pyramid arrays are formed by etching the P(100) Si substrate with the mixture of potassium hydroxide (KOH), isopropyl alcohol (IPA) and DI water. Zinc oxide (ZnO) film is deposited on the Si nano-pyramid arrays as the seed layer by RF sputtering system. ZnO nanorods are grown on the seed layer by using hydrothermal method.
Corrosion process and second-time hydrothermal method are proceeded individually to form the heterojunction on the nano-pyramid arrays with ZnO nanorods. The corrosion process corrodes the ZnO nanorods to produce ZnSnO3 on ZnO surface directly. While the second-time hydrothermal method synthesizes ZnSn(OH)6 (ZHS) at first and then ZHS is transformed into Zn2SnO4 microcubes after an annealing process. The heterojunctions are evaporated with aluminum on top and bottom of the devices to complete the Al/ZnSnO3/ZnO/P-Si/Al and Al/Zn2SnO4 /ZnO/P-Si/Al structures.
The nanostructures are examined with XRD, EDS and SEM for crystallinity and surface morphology. Electrical analyses of the devices are studied for investigating the influence of Si nano-pyramid arrays and heterojunctions. Nano-pyramid arrays can increase the CO2 absorption area effectively and heterojunctions can raise the potential barrier height thus reducing leakage current. Heterojunctions can also enhance the adsorption reaction to the target gas. The experimental results show that the sensing ability of the devices increase effectively by combining these two methods.
ZnSnO3/ZnO/P-Si with nano-pyramid arrays has a sensitivity of 365% under the condition of 2500 ppm CO2 concentration. It is 4 times of the planar device ZnO film/P-Si without etching process. Furthermore, sensitivity of Zn2SnO4/ZnO/P-Si with nano-pyramid arrays increases to 398%. Therefore, the nanocomposite with Zinc and Tin can substantially enhance the performance of the CO2 sensors. It can promote the applications to the indoor air quality management and the greenhouse gas detection.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vii
表目錄 x
圖目錄 xi
第一章、概論 1
1-1前言 1
1-2氣體感測器 1
1-3二氧化碳介紹 2
1-4奈米結構簡介 3
1-5材料介紹 4
1-5-1氧化鋅(ZnO) 4
1-5-2氧化鋅錫(ZTO) 5
1-6論文架構 6
第二章、理論基礎 7
2-1感測器工作原理 7
2-2二氧化碳吸附機制 8
2-3元件基礎理論 9
2-4水熱法原理 11
2-4-1氧化鋅奈米結構之生長機制 12
2-4-2 ZnSnO3腐蝕反應機制 13
2-4-3 Zn2SnO4微米立方之生長機制 13
2-5濕式蝕刻理論 14
2-5-1奈米金字塔陣列蝕刻機制與原理 14
2-6濺鍍理論 16
2-6-1濺射現象 16
2-6-2輝光放射 16
2-6-3薄膜沉積現象 17
第三章、實驗步驟與量測儀器 19
3-1原料選用 19
3-2成長系統 21
3-2-1射頻濺鍍系統(RF Sputtering System) 21
3-2-2真空熱蒸鍍系統(Thermal Vacuum Evaporation System) 23
3-3薄膜分析量測儀器 23
3-3-1場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM)分析 23
3-3-2能量散佈光譜儀(Energy dispersive spectrometer, EDS)分析 24
3-3-3氣體感測器量測系統 24
3-3-4 KEITHLEY 2400半導體參數分析儀 25
3-3-5 X光繞射(X-ray diffraction, XRD)分析 25
3-4製程步驟與成長參數 26
3-4-1 矽基板清洗流程 26
3-4-2矽奈米金字塔陣列蝕刻 26
3-4-3濺鍍沉積氧化鋅薄膜種晶層 27
3-4-4水熱法生長氧化鋅奈米結構 27
3-4-5氧化鋅錫(ZnSnO3)/氧化鋅(ZnO)奈米結構水熱腐蝕成長流程 28
3-4-6氧化鋅錫(Zn2SnO4)微米立方水熱成長流程 28
3-4-7退火系統 29
3-4-8使用熱蒸鍍系統成長電極 29
3-4-9量測實驗 29
第四章、結果與討論 31
4-1氧化層對元件的影響(異質接面感測層材料對感測元件之影響) 31
4-1-1溫度與靈敏度的關係 32
4-2氧化鋅奈米結構 33
4-2-1不同的莫爾濃度之的氧化鋅奈米結構 33
4-2-2不同莫爾濃度對於氣敏特性的影響 33
4-3氧化鋅錫(ZnSnO3)/氧化鋅(ZnO)奈米結構水熱腐蝕成長 34
4-3-1氧化鋅錫(ZnSnO3)/氧化鋅(ZnO)奈米結構氣敏特性的影響 35
4-4氧化鋅錫(Zn2SnO4)微米立方/氧化鋅(ZnO)奈米結構 35
4-4-1水熱時間對於氣敏特性之影響 35
4-5矽奈米金字塔陣列結構分析 37
4-6矽奈米金字塔陣列結構之感測元件分析 38
4-6-1氧化鋅(ZnO)奈米結構生長於矽奈米金字塔陣列結構 38
4-6-2氧化鋅錫(ZnSnO3)/氧化鋅(ZnO)奈米結構生長於矽奈米金字塔陣列結構 39
4-6-3氧化鋅錫(Zn2SnO4)微米立方/氧化鋅(ZnO)奈米結構長於矽奈米金字塔陣列結構 40
4-7最佳性能元件之氣體動態響應圖 40
第五章、結論與未來展望 42
5-1實驗結果歸納 42
5-2未來展望 43
參考文獻 45
參考文獻 References
[1]. 施學銘(1995) "未來全球變遷對海岸環境之衝擊與因應研究規劃",「全球氣候變遷對台灣之影響與因應規劃研討會論文資料,台灣大學全球變遷研究中心
[2]. a Kyoto Protocol to the United Nations Framework Convention on Climate Change". UN Treaty Database. Retrieved 27 November 2014.
[3]. 勞動部。勞工作業環境監測實施辦法。臺灣省臺北市;2013。
[4]. 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第68期1992
[5]. 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第150期六月1999
[6]. 勞動部。勞工作業場所容許暴露標準; 2014。
[7]. 天下雜誌(2007)。全球暖化 台灣發燒。
[8]. ”奈米科技及應用之產業分析與投資機會",經濟部投資業務,2008
[9]. H. M. Lin, C. K. Keng, and C. Y. Tung,“Gas-sensing properties of nanocrystalline TiO2”, Nanostructured Materials 9 (1997)747-750.
[10]. G. Martsal, M. C. Carotta, E. Traversa, and G. Ghiotti, MRS Bulletin, June (1999) 30-36.
[11]. N.V. Hieu, N.D. Chien ”Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures” Physica B, 403 (2008), pp. 50–56
[12]. O. Lupan, G. Chai, L. 0Chow” Fabrication of ZnO nanorod-based hydrogen gas nanosensor” Microelectron. J., 38 (2007), pp. 1211–121
[13]. Rossler, U. Landolt-Bornstein, New Series, Group III. Vol. 17B, 22, 41B. Springer, Heidelberg. 1999
[14]. F. Anderson S. Lima, , Igor F. Vasconcelos, M. Lira-Cantu , Ceramics International “Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells”,;Volume 41, Issue 8, September 2015, Pages 9314–9320
[15]. B. Bott, T.A. Jones, B. Mann “The detection and measurement of CO using ZnO single crystals” Sensors and Actuators;Volume 5, Issue 1, January 1984, Pages 65–73;
[16]. P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[17]. Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films, vol. 199,pp. 223-230, 1991.
[18]. T.Y. Ma and D.K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[19]. S. Baruah, J. Dutta, Science and Technology of Advanced Materials, 12 (2011) 013004
[20]. Y. Zhang, M. Guo, M. Zhang, C. Yang, T. Ma, X. Wang, Journal of Crystal Growth, 308 (2007) pp. 99-104.
[21]. P. Ramamurthy, E.A. Secco, Canadian Journal of Chemistry, 49 (1971) pp. 2813-2816.
[22]. S. Baruah, J. Dutta, Science and Technology of Advanced Materials, 12 (2011) 013004.
[23]. D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, Journal of Applied Physics, 92 (2002) 310.
[24]. K.R.G. Karthik, B.P. Andreasson, C. Sun, S.S. Pramana, B. Varghese, C.H. Sow, N. Mathews, L.H. Wong, S.G. Mhaisalkar, Electrochemical and Solid-State Letters, 14 (2011) K5.
[25]. K. Nomura, Microelectronic Engineering, 72 (2004) 294-298.
[26]. Waghuley, S A, “Synthesis ,characterization and CO2 gas sensing response SnO2/Al2O3 double layer sensor “Dec-2011 IJPAP Vol.49(12) [December 2011], India , p816-819
[27]. S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.
[28]. Neamen, “Semiconductor physics and device” ch9, p336, McGraw-Hill, 1992.
[29]. Yoichi Tohmon, Hiroyasu Mizuno, Yoshimichi Ohki, Kotoku Sasagane, Kaya Nagasawa, and Yoshimasa Hama” Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy”Phys. Rev. B 39, 1337 – Published 15 January 1989
[30]. Frank J. Feigl*, W. Beall Fowler*t and Kwok L. Yipt” OXYGEN VACANCY MODEL FOR THE E~CENTER IN Si02” Physics Department, Lehigh University, Bethlehem, Penn. 18015, U.S.A.(Recetved 9 October 1973 by A.J. Chynoweth)
[31]. H.Windischmann and P.Mark,“A model for operation of a thin film SnOx conductance-modulation carbon monoxide sensor”Journal of the electrochemical society Vol.126,No4.pp.627-633 (1979)
[32]. Julian W. Gardner,Vijay K. Varadan,Osama O. Awadelkarim”Microsensors, MEMS, and Smart Devices”Wiley. ISBN: 978-0-471-86109-6(2001)
[33]. A Wireless, “Passive Carbon Nanotube-Based Gas Sensor”Keat Ghee Ong, Kefeng Zeng, and Craig A. Grimes, Member, IEEE
[34]. M. J. Madou, S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, San Diego (1989).
[35]. B. Ostrick, M. Fleischer, H. Meixner, C.-D. Kohl, Sens. Actuat. B 68 (2000) 197.
[36]. Yongming Fu, Yuxin Nie, Yayu Zhao, Penglei Wang, Lili Xing, Yan Zhang,
and Xinyu Xue “Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor ” ACS Appl. Mater. Interfaces 2015, 7, Pages 10482−10490
[37]. Zi Qin, Yunhua Huang, Qinyu Wang, Junjie Qi, Xiujun Xing and Yue Zhang
“ Controllable synthesis of well-dispersed and uniform-sized single crystalline
zinc hydroxystannate nanocubes” CrystEngComm, 2010, 12, 4156–4160
[38]. Mohammad Abbas Mahmood,Joydeep Dutta “Microwave assisted hydrothermal synthesis of zinc hydroxystannate films on glass substrates” J Sol-Gel Sci Technol (2012) 62:495–504
[39]. Aarthy Sivapunniyam, Niti Wiromrat, Myo Tay Zar Myint, Joydeep Dutta
“High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate” Sensors and Actuators B 157 (2011) 232–239
[40]. Donald A. Neamen 著,李世鴻、陳勝利譯,半導體元件物理,台商圖書,(1998).
[41]. 施敏、張俊彥,半導體元件與物理與製作技術,高立圖書公司,(1996).
[42]. H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientation dependence and behavior of passivation layer,” J Electrochem. Soc, vol.137, pp. 3612, 1990.
[43]. ]H Seidel, L Csepregi, A Heuberger, and H Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part II. Influence of dopants,” J Electrochem. Soc, vol. 137, pp. 3626, 1990.
[44]. Q. Micheal and S. Julian, “Semiconductor Manufacturing Technology”,Prentice Hall, 443.
[45]. D. B. Lee, “Anisotropic etching of silicon,” J Appl Phys, vol 40, pp4569,1969.
[46]. P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon
anisotropic etching”, J. Electrochem. Soc. 140, 1080 (1993).
[47]. T. Baum, and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications,” J. Micromech. Microeng, pp. 338, 1997.
[48]. 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
[49]. 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
[50]. 李正中,“光學薄膜製鍍技術與應用”,行政院國科會光電小組編印,1983,p.1-29。
[51]. Thomas C. Gregory,1992,化學藥品辭典,益群書店股份有限公司
[52]. 汪建民,“材料分析",中國材料科學學會,1998。
[53]. B. D. Cullity, “Elements of X-ray Diffraction", (1978) Pages 102.
[54]. Yinglei Tao, Ming Fu, Ailun Zhao, Dawei He, Yongsheng Wang “The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method “Journal of Alloys and Compounds , Volume 489, Issue 1, 7 January 2010, Pages 99–102
[55]. Y. M. Fung, W. Y. Cheung, I. H. Wilson, D. Chen, J. B. Xu, S. P. Wong, and
R. W. M. Kwok, “Electron field emission characteristics of textured silicon surface,” Papers from the 13th international vacuum microelectronics, Guanhou(China):AVS, pp. 884-887, 2001.
[56]. Sambhaji S. Bhande, Rajaram S. Mane, Anil V. Ghule, Sung-Hwan Han
“A bismuth oxide nanoplate-based carbon dioxide gas sensor” Scripta Materialia , Volume 65, Issue 12, December 2011, Pages 1081–1084
[57]. P.W. Atkins, “Physical Chemistry Fifth edition,” Oxford, pp 877-878, 1994.
[58]. J. Herrána, G. G Mandayoa, N. Pérez, E. Castaño , A. Prim, E. Pellicer, T. Andreu, F. Peiró, A. Cornet, J.R. Morante , “ On the structural characterization of BaTiO3–CuO as CO2 sensing material” , Sensors and Actuators B: Chemical , Volume 133, Issue 1, 28 July 2008, Pages 315–320
[59]. 陳伯諺,“複合金屬氧化物奈米結構應用於二氧化碳氣體感測器之研究 “,國立中山大學電機工程研究所,碩士論文,2015。
[60]. Koziej, D.; Bârsan, N.; Hoffmann, V.; Szuber, J.; Weimar, U. Complementary Phenomenological and Spectroscopic Studies of Propane Sensing with Tin Dioxide Based Sensors. Sens. Actuators, B 2005, 108, 75-83.
[61]. 蕭宏,2007,半導體製程技術導論,修訂版,培生教育出版股份有限公司。
[62]. John DeBoer,“Evaluation Methods for Porous Silicon Gas Sensors “Georgia Institute of Technology August, 2004
[63]. S. Naama,T.Hadjersi,A.Keffous,G.Nezzal,“CO2 gas sensor based on silicon nanowires modified with metal nanoparticles” Materials Sciencein Semiconductor Processing 38 (2015) 367–372
[64]. M. Q. Israr,J. R. Sadaf,L. L. Yang,O. Nur,M. Willander,J. Palisaitis and P. O. Å. Persson“Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties”, Appl. Phys. Lett. 95, 073114 (2009)
[65]. T Krishnakumar, R Jayaprakash, T Prakash, D Sathyaraj,N Donato, S Licoccia ,M Latino ,“CdO-based nanostructures as novel CO2 gas sensors”, A Stassi and G Neri ,2011 Nanotechnology 22 325501
[66]. Y.-J. Jeong, C. Balamurugan, D.-W. Lee,“Enhanced CO2 gas-sensing performance of ZnO nanopowder by Laloaded during simple hydrothermal method”, Sensors and Actuators B 229 (2016) 288–296
[67]. J. Herran,G. GaMandayo,I. Ayerdi,E. Castano, “Influence of silver as an additive on BaTiO3–CuO thin film for CO2 monitoring”,Sensors and Actuators B 129 (2008)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code