Responsive image
博碩士論文 etd-0709117-135220 詳細資訊
Title page for etd-0709117-135220
論文名稱
Title
厭氧序批式反應器額外添加氧化石墨烯對藥品去除 之可行性
Feasibility of adding Graphene Oxide to remove Pharmaceuticals by Anaerobic Sequencing Batch Reactor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-08-30
關鍵字
Keywords
厭氧生物反應、藥品及個人保健用品、氧化石墨烯、馴養、批次處理、共代謝
pharmaceuticals and personal care products, anaerobic biological reaction, cometabolism, batch treatment, graphene oxide, domestication
統計
Statistics
本論文已被瀏覽 5666 次,被下載 22
The thesis/dissertation has been browsed 5666 times, has been downloaded 22 times.
中文摘要
隨著醫療科學發展,藥品及個人保健用品(Pharmaceuticals and personal care products,PPCPs)種類相當廣泛如抗癲癇藥物、鎮痛解熱劑、抗生素,或是個人護理用品,如防曬劑、香水、化妝品等,加上取得之便利性,PPCPs用量日亦漸增,在一般傳統污水處理程序無法有效除去,因此環境水體、污水廠出流水中皆偵測到PPCPs存在ng/L - µg/L濃度。本研究選用厭氧序批式反應器(Anaerobic Sequencing Batch Reactor,ASBR)進行馴養污泥及批次處理實驗,以了解在馴養階段或處理階段額外添加吸附劑生物對藥品廢污水二級生物處理之影響,三種目標藥品為:抗癲癇藥物之卡馬西平(Carbamazepine)、抗組織胺之多西拉敏(Doxylamine)、非類固醇止痛(藥品種類用量最大)之布洛芬(Ibuprofen)。藥品結構特徵可能影響生物處理去除效率,如卡馬西平及布洛芬皆為接受電子基團(Electron acceptor groups,EWGs),但其自由能低於電子接受者為CO2及SO42-可貢獻之自由能;多西拉敏則具有供電子基團(Electron donor groups,EDGs)。添加之吸附劑生物載體為氧化石墨烯(Graphene oxide,GO)材料,希冀藉由其豐富含氧官能基團和二維平面結構表面邊緣,助於生物電子傳遞之特性,觀察對生物及藥品去除影響,實驗過程亦嘗試添加活性碳作為對照組。
馴養污泥階段,在總體積2.5 L之ASBR每6天為1週期添加吸附劑及3種藥品,實驗為4座反應槽分別為:(1)厭氧污泥添加GO及藥品(命名為GSP)、(2)厭氧污泥添加活性碳(Active carbon,AC)及藥品(命名為ASP)、(3)厭氧污泥添加藥品(命名為SP)、(4)厭氧污泥(命名為BS)。不同馴養條件觀察吸附劑差異對生物之影響和藥品去除,及藥品是否能藉由厭氧污泥馴養提升藥品去除能力。實驗結果顯示,4種不同馴養污泥條件組別,污泥生長無顯著性差異(P≥0.05),GO與藥品並未對馴養過程之厭氧污泥生長情形產生明顯的負面影響。4組馴養污泥在48天至69天馴養期間,多西拉敏及布洛芬本身物化結構可能為生物降解及生物吸附,去除率皆高於90%;GSP組別發現(57天到69天)卡馬西平無去除效果,馴養期間亦可能有生物吸脫附情況產生。
批次實驗,在總體積為300 ml之ASBR添加吸附劑及3種藥品,分別改變水力停留時間和吸附劑劑量,(1)不同水力停留時間實驗為:抽取4種不同馴養過程之厭氧污泥,加入含特定藥品濃度(800 mg/L)合成廢水,並分別再添加1 mg吸附材料(GO及AC);(2)不同吸附劑類型及劑量實驗為:抽取已馴養藥品完成之厭氧污泥(SP),加入含特定藥品濃度(800 mg/L)合成廢水,並分別再添加1 0、20及50 mg吸附材料(GO及AC)。批次實驗結果顯示,當中馴養及處理階段皆添加GO(1 mg),接觸時間須至6天,生物對水中有機質利用率提升現象,或是處理階段添加高劑量GO(50 mg),碳源、氮源及藥品(卡馬西平和布洛芬,分別為30.4-55.6%及30.5-70.4%去除率)濃度皆有降低,且污泥量生長增加3.4-9.9%,說明加入GO產生正面效益共代謝藥品,另外卡馬西平酸性環境下帶正電亦可能被生物污泥及GO所吸附(污泥顆粒及GO表面含氧官能基皆帶負電);當兩階段添加AC,接觸時間須至6天,或是處理階段添加高劑量AC(20-50 mg),幫助生物吸附水中卡馬西平及布洛芬進行降解,去除率為78.0-93.7%及62.0-93.1%。空白厭氧污泥,處理階段分別添加1 mg吸附劑(GO及AC),在自由能及劑量不足下,需要增加接觸時間至6天,提升3種藥品去除。
Abstract
Advances in medical science and technology have expanded the variety of pharmaceuticals and personal care products (PPCPs) present in the environment. Given the increase of PPCP consumption, partly because of their wide availability, PPCPs are released into wastewaters and known to ineffectively removed by conventional treatment technologies. PPCPs at concentrations between nanograms and micrograms per liter are commonly detected in waterbodies and wastewater treatment effluents. The objective of this study was to examine the effect of adding adsorbents during domestication or secondary treatment of pharmaceutical wastewaters, with the use of anaerobic sequencing batch reactor (ASBR) for sludge domestication and batch experiments. Three pharmaceuticals tested were carbamazepine, an antiepileptic, doxylamine, an antihistamine, and ibuprofen, a commonly used nonsteroidal analgesic. The influences of graphene oxide (GO) and active carbon (AC) as the adsorbent on the biological treatment of pharmaceuticals were tested. In the results of sludge domestication experiments using the ASBR, no significant differences in sludge growth were discovered whether GO or AC was added or not. Neither GO nor the pharmaceutical mixture had significantly negative effect on the sludge growthduring domestication. The molecular structures of doxylamine and ibuprofen facilitated the biological degradation and absorption (removal rates were both higher than 90%), whereas sorption was more important for carbamazepine concentration variations. In the results from the batch experimenst, addition of GO (e.g., 1 to 50 mg) enhanced the utilization of organic matter by anaerobic sludge. By adding GO, the concentrations of carbon, nitrogen, and phamaceutticals all significantly decreased (the removal rates of carbamazepine and ibuprofen were 30.4%–55.6% and 30.5%–70.4%, respectively). Moreover, the sludge volume increased by 3.4%–9.9%, suggesting that the GO addition had a positive effect on the biological treatment. When carbamazepine was positively charged in an acidic environment, it was easily adsorbed by sludge and GO (the oxygen-containing functional groups of sludge particles and the GO surface were both negatively charged). When AC was added in the systems, either a long (e.g., 6 days) contact time or a high AC dose (e.g., 20–50 mg) was needed to facilitate the absorption and degradation of carbamazepine and ibuprofen. The removal rates of carbamazepine and ibuprofen were 78.0%–93.7% and 62.0%–93.1%, respectively. The findings of this study provide insights into how adding GO or AC affects the biological treatment of pharmaceutical-containing wastewaters.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 水資源 5
2.1.1 生活污水 5
2.1.2 畜牧廢水 6
2.1.3 醫療廢水 7
2.2 藥品及個人保健用品介紹 7
2.2.1 環境中藥品來源 9
2.2.2 藥品對環境之負面影響 11
2.2.3 水中藥品之去除 11
2.2.4 藥品衍生高致癌性副產物亞硝胺 12
2.3 亞硝胺類化合物 13
2.3.1 亞硝胺類化合物的危害與規範 14
2.4 厭氧序批式反應器 16
2.4.1 厭氧序批式反應器應用於廢污水處理 18
2.4.2 厭氧批次反應器之重要操作因子 19
2.5 石墨烯及氧化石墨烯 20
2.5.1 石墨烯類衍生性材料應用於藥品類污染物之去除 21
2.5.2 氧化石墨烯或活性碳添加對厭氧生物反應之影響 22
2.5.3 石墨烯衍生性材料之生物毒性 23
2.6 石墨烯類衍生性材料之環境宿命 23
2.6.1 石墨烯類衍生性材料在環境中之氧化還原及降解反應 24
第三章 研究方法 25
3.1 研究架構 25
3.2 實驗材料與設備 28
3.2.1 材料與試劑 28
3.3 實驗設計與方法 35
3.3.1 GO/Sand複合材料及粉狀氧化石墨烯製作 36
3.3.2 植腫污泥來源 37
3.3.3 合成廢水配方 38
3.3.4 先期厭氧批次實驗去除藥品測試 38
3.3.5 厭氧序批式反應器馴養含有藥品及吸附劑之污泥 40
3.3.6 厭氧批次實驗去除藥品 41
3.4 卡馬西平、布洛芬、多西拉敏3種藥品分析 43
3.4.1 固相萃取(前處理) 43
3.4.2 藥品儀器分析 44
3.5 水質分析項目與方法 46
第四章 結果與討論 48
4.1 先期實驗 48
4.1.1 七天馴養期COD、MLSS、MLVSS、與pH變化 48
4.1.2 七天馴養後批次實驗添加氧化石墨烯對去除COD影響 51
4.1.3 七天馴養後批次實驗添加氧化石墨烯對MLVSS及MLSS影響 55
4.1.4七天馴養後批次實驗添加氧化石墨烯對去除CBZ影響 58
4.2 厭氧序批式反應器(ASBR)之污泥馴養實驗 60
4.2.1 MLVSS、MLSS及MLVSS/MLSS比值變化 61
4.2.2 COD濃度變化 65
4.2.3 pH變化 66
4.2.4藥品濃度變化 67
4.3批次處理實驗-不同水力停留時間 72
4.3.1 MLSS、MLVSS及MLVSS/MLSS比值變化 72
4.3.2 三種藥品去除效果 76
4.3.3 氨氮/凱氏氮濃度 81
4.3.4 SUVA變化 85
4.4批次實驗-不同吸附劑類型及劑量 87
4.4.1 MLSS及MLVSS濃度變化 88
4.4.2三種藥品去除變化 90
4.4.3 氨氮/凱氏氮濃度變化 92
4.4.4 對COD去除變化 94
4.4.5 SUVA值變化 95
第五章 結論與建議 97
5.1 結論 97
5.2 建議 101
參考文獻 102









圖目錄
圖2.2-1 Ibuprofen、Carbamazepine、Doxylamine三種藥品之化學結式 9
圖2.2-2 藥品及個人保健用品在環境中代表性來源和宿命 10
圖2.3-1 常見亞硝胺類化合物之化學結式 13
圖2.4.1 厭氧連續批次反應器四個階段操作順序 17
圖2.4.2 反應槽內食微比變化 17
圖2.4.3 厭氧微生物代謝機質途徑及產物 18
圖2.5-1 石墨烯類衍生性材料 20
圖2.5-2 生物厭氧還原氧化石墨烯降解硝基苯轉化為苯胺 22
圖2.6-1 水中GO之可能降解途徑(光降解與生物降解) 24
圖3.1-1 本研究架構流程圖 27
圖3.2-1 本研究使用之粉狀氧化石墨烯懸浮液 28
圖3.3-1 本研究厭氧批次反應器 36
圖3.3-2 GO/Sand複合材料 37
圖3.3-3粉末狀GO 37
圖3.3-4 厭氧污泥植種來源之生活污水廠流程圖 37
圖3.3-5 先期實驗第一部分流程圖 39
圖3.3-6 先期實驗第二部分流程圖 40
圖3.3-7 厭氧連續式批器反應器馴養含有藥品及吸附劑之污泥流程圖 41
圖3.3-8 厭氧批次實驗改變停留時間測試去除藥品 42
圖3.3-9 厭氧批次實驗改變吸附劑劑量測試去除藥品 43
圖4.1-1 厭氧序批式反應器 COD濃度隨時間變化趨勢 50
圖4.1-2 厭氧序批式反應器 MLSS、MLVSS隨時間變化趨勢 50
圖4.1-3 厭氧序批式反應器pH隨時間變化趨勢 51
圖4.1-4 批次處理中添加不同GO/Sand劑量與接觸時間為3天及6天之COD濃度 53
圖4.1-5 批次處理中不同GO懸浮液劑量與接觸時間為3天及6天之COD濃度 .54

圖4.1-6 批次處理中(無污泥)不同劑量GO懸浮液與接觸時間為3天及6天之COD濃度 54
圖4.1-7 批次處理中添加不同GO/Sand劑量與改變接觸時間對水中MLSS及 MLVSS濃度影響(X軸分別表示GO/Sand添加劑量與接觸時間) 57
圖4.1-8 批次處理中添加不同GO懸浮液劑量與改變接觸時間對水中MLSS及 MLVSS濃度影響(X軸分別表示GO/Sand添加劑量與接觸時間) 57
圖4.1-9 批次處理中添加不同GO/Sand劑量與接觸時間為3天之CBZ去除率變化 59
圖4.1-10 批次處理中添加不同GO懸浮液劑量與接觸時間為3天之CBZ去除率變化 60
圖4.2-1 污泥馴養期間添加GO及三種藥品之MLSS及MLVSS濃度變化 62
圖4.2-2 污泥馴養期間添加AC及三種藥品之MLSS及MLVSS濃度變化 62
圖4.2-3 污泥馴養期間添加三種藥品之MLSS及MLVSS濃度變化 64
圖4.2-4 空白厭氧污泥馴養期間之MLSS及MLVSS濃度變化 64
圖4.2-5 污泥馴養期間COD去除率變化 66
圖4.2-6 污泥馴養期間pH變化 67
圖4.2-7 污泥馴養期間CBZ濃度去除率變化 68
圖4.2-8 污泥馴養期間IBF濃度去除率變化 69
圖4.2-9 污泥馴養期間DOX濃度去除率變化 69
圖4.3-1 批次處理中添加吸附劑與接觸時間1天MLSS及MLVSS濃度變化 75
圖4.3-2 批次處理中添加吸附劑與接觸時間2天MLSS及MLVSS濃度變化 75
圖4.3-3 批次處理中添加吸附劑與接觸時間6天MLSS及MLVSS濃度變化 76
圖4.3-4 為批次處理中添加吸附劑與接觸時間為1天對三種藥品去除率變化 78
圖4.3-5 批次處理中添加吸附劑與接觸時間為2天對三種藥品去除率變化 79
圖4.3-6 批次處理中添加吸附劑與接觸時間為6天對三種藥品去除率變化 79
圖4.3-7 批次處理中添加吸附劑與接觸時間為1天氨氮及總凱氏氮濃度 84
圖4.3-8 批次處理中添加吸附劑與接觸時間為2天氨氮及總凱氏氮濃度 84
圖4.3-9 批次處理中添加吸附劑與接觸時間為6天氨氮及總凱氏氮濃度 85
圖4.3-10 批次處理中添加吸附劑與各接觸時間SUVA變化 87
圖4.4-1 批次處理中添加不同吸附劑類型及劑量之MLSS及MLVSS濃度變化 89
圖4.4-2 批次處理中添加不同吸附劑類型及劑量對三種藥品去除率之影響 91
圖4.4-3 批次處理中添加GO及AC對厭氧生物降解藥品行為 92
圖4.4-4 批次處理中添加不同吸附劑類型及劑量之氨氮、凱氏氮濃度變化 93
圖4.4-5 批次處理中添加不同吸附劑類型及劑量之COD濃度變化 94
圖4.4-6 批次處理中添加不同吸附劑類型及劑量之SUVA變化 96




表目錄
表2.1.1 生活污水之水質成分 6
表2.2-1為Ibuprofen、Carbamazepine、Doxylamine三種藥品物化參數 8
表2.2-2為本研究藥品在各地區污水廠進出流濃度 10
表2.2.3 5種PPCPs之NDMA莫耳轉換率 12
表2.3-1 亞硝胺類化合物毒性分類以及致癌風險 15
表3.2-1 本研究使用之材料 29
表3.2-2 本研究所使用之藥品 29
表3.2-3 本研究所使用之其他試劑及藥品 30
表3.2-4 水質參數簡易分析法使用之藥包 32
表3.2-5儀器設備之用途與型號 32
表3.3-1 合成廢水配方,以COD as 1000 mg/L所示 38
表3.4-1 藥品氣相層析儀(GC)分析方法相關參數 45
表3.4-2質譜儀(MS)設定相關參數 45
表3.4-3 藥品偵測極限 46
表3.5-1 水質分析項目與方法彙整 47
表4.1-1 厭氧序批式反應器連續水質參數變化 49
表4.1-2 批次處理中添加不同GO類型與各接觸時間去除COD影響 53
表4.1-3 批次處理中接觸時間3天之MLSS及MLVSS濃度影響 56
表4.1-4 批次處理中接觸時間6天之MLSS及MLVSS濃度影響 56
表4.1-5 批次處理中接觸時間為3天去除CBZ變化 59
表4.2-1 馴養污泥期間實驗組別 61
表4.2-2 污泥馴養期間添加吸附材料及藥品在不同時間之藥品去除結果 70
表4.2-3 污泥馴養期間有無添加藥品在不同時間之藥品去除結果 71
表4.3-1 批次處理中改變接觸時間之實驗代號說明 72
表4.3-2 批次處理中添加吸附劑與各接觸時間MLSS及MLVSS濃度變化 74
表4.3-3 批次處理中添加吸附劑與各接觸時間對三種藥品去除率 80
表4.3-4 批次處理中添加吸附劑在各接觸時間接觸時間氨氮及總凱氏氮濃度 83
表4.3-5 批次處理中添加吸附劑與各接觸時間UV254、DOC及SUVA變化 86
表4.4-1 批次處理中添加不同吸附劑類型及劑量實驗組別 88
表4.4-2 批次處理中添加不同吸附劑類型及劑量之MLSS及MLVSS濃度變化 89
表4.4-3 批次處理中添加不同吸附劑類型及劑量對三種藥品去除變化 91
表4.4-4 批次處理中添加不同吸附劑類型及劑量之氨氮、總凱氏氮濃度變化 93
表4.4-5 批次處理中添加不同吸附劑類型及劑量之COD濃度變化 94
表4.4-6 批次處理中添加不同吸附劑類型及劑量之SUVA變化……………….….95
參考文獻 References
Abdel-Shafy, H. I. & M. S. M. Mansour (2017) Treatment of Phatinaceutical Industrial Wastewater via Anaerobic/Aerobic System for Unrestricted Reuse. Journal of Scientific & Industrial Research, 76, 119-127.
Ahmed, F., Rodrigues, D.F., 2013. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. Journal of Hazardous Materials 256, 33-39.
Akhavan, O., Ghaderi, E., 2010. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. Acs Nano 4, 5731-5736.
B.E. Erickson, Environ. Sci. Technol. 36 (2002) 140A.
Benedek, A. In Activated Carbon Adsorption of Organics from the Aqueous Phase; Suffet, I. H., McGuire, M. J., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, 1980; Vol. 2, pp 273-302.
Chen, C. H., S. Hu, J. F. Shih, C. Y. Yang, Y. W. Luo, R. H. Jhang, C. M. Chiang & Y. J. Hung (2017) Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach. Scientific Reports, 7.
Chowdhury, I., Hou, W.C., Goodwin, D., Henderson, M., Zepp, R.G., Bouchard, D., 2015. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Research 78, 37-46.


Combarros, R.G., Collado, S., Diaz, M., 2016. Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. Journal of Hazardous Materials 310, 246-252.
Cubas, S.A., Foresti, E., Rodrigues, J.A.D., Ratusznei, S.M., Zaiat, M., 2004. Influence of liquid-phase mass transfer on the performance of a stirred anaerobic sequencing batch reactor containing immobilized biomass. Biochemical Engineering Journal 17, 99-105.
Dague, R.R., Habben, C.E., Pidaparti, S.R., 1992. INITIAL STUDIES ON THE ANAEROBIC SEQUENCING BATCH REACTOR. Water Science and Technology 26, 2429-2432.
Dutta, K., C. Y. Tsai, W. H. Chen & J. G. Lin (2014) Effect of carriers on the performance of anaerobic sequencing batch biofilm reactor treating synthetic municipal wastewater. International Biodeterioration & Biodegradation, 95, 84-88.
Eaton, A. (1995) MEASURING UV-ABSORBING ORGANICS - A STANDARD METHOD. Journal American Water Works Association, 87, 86-90.
Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A., Garric, J., 2003. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety 55, 359-370.
Gabriel, F. L. P., E. J. Routledge, A. Heidlberger, D. Rentsch, K. Guenther, W. Giger, J. P. Sumpter & H. P. E. Kohler (2008) Isomer-specific degradation and endocrine disrupting activity of nonylphenols. Environmental Science & Technology, 42, 6399-6408.
Galus, M., J. Jeyaranjaan, E. Smith, H. X. Li, C. Metcalfe & J. Y. Wilson (2013) Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquatic Toxicology, 132, 212-222.
Galus, M., N. Kirischian, S. Higgins, J. Purdy, J. Chow, S. Rangaranjan, H. X. Li, C. Metcalfe & J. Y. Wilson (2013) Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquatic Toxicology, 132, 200-211.
Geim, A.K., Novoselov, K.S., 2007. The rise of graphene. Nature Materials 6, 183-191.
Gunnarsson, L., M. Adolfsson-Erici, B. Bjorlenius, C. Rutgersson, L. Forlin & D. G. J. Larsson (2009) Comparison of six different sewage treatment processes-Reduction of estrogenic substances and effects on gene expression in exposed male fish. Science of the Total Environment, 407, 5235-5242.
HealthCanada (2011) Guidelines for Canadian Drinking Water Quality.
Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5-17.
Hernando, M.D., Mezcua, M., Fernandez-Alba, A.R., Barcelo, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69, 334-342.
http://water.epa.gov/scitech/drinkingwater/dws/ccl/ccl3.cfm.
http://www.oehha.ca.gov/water/phg/pdf/122206NMDAphg.pdf
https://comptox.epa.gov/dashboard/about.

Hu, W.B., Peng, C., Luo, W.J., Lv, M., Li, X.M., Li, D., Huang, Q., Fan, C.H., 2010. Graphene-Based Antibacterial Paper. Acs Nano 4, 4317-4323.
Jastrzebska, A.M., Kurtycz, P., Olszyna, A.R., 2012. Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research 14.
Jeong, E., H. W. Kim, J. Y. Nam, Y. T. Ahn & H. S. Shin (2010) Effects of the hydraulic retention time on the fouling characteristics of an anaerobic membrane bioreactor for treating acidified wastewater. Desalination and Water Treatment, 18, 251-256.
Jurado-Sanchez, B., Ballesteros, E., Gallego, M., 2011. Gas Chromatographic Determination of N-Nitrosamines, Aromatic Amines, and Melamine in Milk and Dairy Products Using an Automatic Solid-Phase Extraction System. Journal of Agricultural and Food Chemistry 59, 7519-7526.
Koumaki, E., D. Mamais & C. Noutsopoulos (2017) Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. Journal of Hazardous Materials, 323, 233-241.
Kummerer, K. (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources - a review. Chemosphere, 45, 957-969.
Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M., 2010. Fate of antibiotics during municipal water recycling treatment processes. Water Research 44, 4295-4323.
Levy, S. B. & B. Marshall (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10, S122-S129.

Lijinsky, W., 1999. N-Nitroso compounds in the diet. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 443, 129-138.
Lin, A. Y. C. & Y. T. Tsai (2009) Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 407, 3793-3802.
Liu, F. F., J. Zhao, S. G. Wang, P. Du & B. S. Xing (2014) Effects of Solution Chemistry on Adsorption of Selected Pharmaceuticals and Personal Care Products (PPCPs) by Graphenes and Carbon Nanotubes. Environmental Science & Technology, 48, 13197-13206.
Liu, S.B., Hu, M., Zeng, T.H., Wu, R., Jiang, R.R., Wei, J., Wang, L., Kong, J., Chen, Y., 2012. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 28, 12364-12372.
Lowry, G.V., Gregory, K.B., Apte, S.C., Lead, J.R., 2012. Transformations of Nanomaterials in the Environment. Environmental Science & Technology 46, 6893-6899.
Matos, C.F., Galembeck, F., Zarbin, A.J.G., 2014. Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78, 469-479.
Mazel, D. (2006) Integrons: agents of bacterial evolution. Nature Reviews Microbiology, 4, 608-620.



Mockaitis, G., Ratusznei, S.M., Rodrigues, J.A.D., Zaiat, M., Foresti, E., 2006. Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management 79, 198-206.
Mostafa, A., A. El-Dissouky, A. Fawzy, A. Farghaly, P. Peu, P. Dabert, S. Le Roux & A. Tawfik (2016) Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresource Technology, 216, 520-528.
Nakada, N., T. Tanishima, H. Shinohara, K. Kiri & H. Takada (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40, 3297-3303.
Ndon, U.J., Dague, R.R., 1997. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater. Water Research 31, 2455-2466.
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva & A. A. Firsov 2004) Electric field effect in atomically thin carbon films. Science, 306, 666-669.
OEHHA,.(2006).Public Health Goal for Chemical in Drinking Water:N-Nitrosodimethylamine.
P.A. Wilderer, R.L. Irvine, M.C. Goronsky, Sequencing Batch Reactor Technology, Scietific and Technical Report No. 10, IWA Publishing, London, 2001.


Rasool, K. & D. S. Lee (2015) Influence of Multi-Walled Carbon Nanotubes on Anaerobic Biological Sulfate Reduction Processes. Journal of Nanoelectronics and Optoelectronics, 10, 485-489.
Roberts, J., A. Kumar, J. Du, C. Hepplewhite, D. J. Ellis, A. G. Christy & S. G. Beavis (2016) Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625-1637.
Roberts, M. C. (2005) Update on acquired tetracycline resistance genes. Fems Microbiology Letters, 245, 195-203.
Rodgers, J.D., Bunce, N.J., 2001. Treatment methods for the remediation of nitroaromatic explosives. Water Research 35, 2101-2111.
Rodrigues, J.A.D., Ratusznei, S.M., de Camargo, E.F.M., Zaiat, M., 2003. Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. Advances in Environmental Research 7, 405-410.
Rodriguez, D. C. & G. P. Mesa (2009) Ammoniacal nitrogen removal in wastewater using nitrifying and denitrifying bacteria in a SBR system. New Biotechnology, 25, S353-S353.
Saba, B., A. Khalid, A. Nazir, H. Kanwal & T. Mahmood (2013) Reactive black-5 azo dye treatment in suspended and attach growth sequencing batch bioreactor using different co-substrates. International Biodeterioration & Biodegradation, 85, 556-562.
Salas, E.C., Sun, Z.Z., Luttge, A., Tour, J.M., 2010. Reduction of Graphene Oxide via Bacterial Respiration. Acs Nano 4, 4852-4856.
Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B., 2012. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chemical Research in Toxicology 25, 15-34.
Sanchez, V.C., Pietruska, J.R., Miselis, N.R., Hurt, R.H., Kane, A.B., 2009. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 1, 511-529.
Santos, L., Araujo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., Montenegro, M., 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials 175, 45-95.
Sarti, A., B. S. Fernandes, M. Zaiat & E. Foresti (2007) Anaerobic sequencing batch reactors in pilot-scale for domestic sewage treatment. Desalination, 216, 174-182.
Scheytt T., 2002, Pharmaceuticals in Groundwater- Input, Degradation, and. Transport (in German), Habilitation thesis, Technical University Berlin, 148 pp.
Shao, X. W., D. C. Peng, Z. H. Teng & X. H. Ju (2008) Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 99, 3182-3186.
Shen, R. & S. A. Andrews (2011) Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research, 45, 944-952.
Shiau, J. T. & Y. Y. Hsiao (2012) Water-deficit-based drought risk assessments in Taiwan. Natural Hazards, 64, 237-257.
Singh, M. & R. K. Srivastava (2011) Sequencing batch reactor technology for biological wastewater treatment: a review. Asia-Pacific Journal of Chemical Engineering, 6, 3-13.
Sung, S. W. & R. R. Dague (1995) LABORATORY STUDIES ON THE ANAEROBIC SEQUENCING BATCH REACTOR. Water Environment Research, 67, 294-301.
Suthaker, S., Polprasert, C., Droste, R.L., 1991. SEQUENCING BATCH ANAEROBIC REACTORS FOR TREATMENT OF A HIGH-STRENGTH ORGANIC WASTE-WATER. Water Science and Technology 23, 1249-1257.
Tanoue, R., Y. Sato, M. Motoyama, S. Nakagawa, R. Shinohara & K. Nomiyama (2012) Plant Uptake of Pharmaceutical Chemicals Detected in Recycled Organic Manure and Reclaimed Wastewater. Journal of Agricultural and Food Chemistry, 60, 10203-10211.
USEPA(2009)Contaminant Candidate List 3(CCL3).
USEPA(2012)Pharmaceuticals and personal care products ,The U.S. Environmental Protection Agency.
USEPA(2016)Chemical Safety for Sustainability Research Program.
USEPA(2016)The Estimation Programs Interface (EPI) Suite, Office of Pollution Prevention and Toxics and Syracuse Research Corporation (SRC).
USHHS (2014) Report on Carcinogens, Thirteenth Edition.

Van der Zee, F.P., Bisschops, I.A.E., Lettinga, G., Field, J.A., 2003. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science & Technology 37, 402-408.
Ventanas, S., Ruiz, J., 2006. On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device. Talanta 70, 1017-1023.
Wang, J., Zhang, H.K., Wang, D., Lu, H., Zhou, J.T., 2016. Effect of bioreduced graphene oxide on anaerobic biotransformation of nitrobenzene in an anaerobic reactor. Environmental Technology 37, 39-45.
Wang, K., S. Y. Wang, R. L. Zhu, L. Miao & Y. Z. Peng (2013) Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR. Bioresource Technology, 134, 212-218.
Wei, C. H., C. Hoppe-Jones, G. Amy & T. Leiknes (2016) Organic micro-pollutants' removal via anaerobic membrane bioreactor with ultrafiltration and nanofiltration. Journal of Water Reuse and Desalination, 6, 362-370.
WHO.(2008). N-Nirtrosodimethylamine in Drinking-water Background document for development of WHO Guideline for Drinking-water Quality.World Health Organization Retrieved from
http://www.who.int/water_sanitation_health/dwq/chemical/ndma_2add_feb2008.pdf.


Wijekoon, K. C., J. A. McDonald, S. J. Khan, F. I. Hai, W. E. Price & L. D. Nghiem (2015) Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor. Bioresource Technology, 189, 391-398.
Wu, C. X., A. L. Spongberg, J. D. Witter, M. Fang & K. P. Czajkowski (2010) Uptake of Pharmaceutical and Personal Care Products by Soybean Plants from Soils Applied with Biosolids and Irrigated with Contaminated Water. Environmental Science & Technology, 44, 6157-6161.
Yamamoto, H., Y. Nakamura, S. Moriguchi, Y. Honda, I. Tamura, Y. Hirata, A. Hayashi & J. Sekizawa (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43, 351-362.
Yang, G.C.C., Tang, P.L., 2016. Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process. Water Science and Technology 73, 2268-2274.
Zhang, C.Z., Li, T., Yuan, Y., Xu, J.Q., 2016. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms. Chemosphere 153, 531-540.
Zhang, R.H., Tao, J., Dugba, P.N., 2000. Evaluation of two-stage anaerobic sequencing batch reactor systems for animal wastewater treatment. Transactions of the Asae 43, 1795-1801.


Zhu, R. L., S. Y. Wang, J. Li, K. Wang, L. Miao, B. Ma & Y. Z. Peng (2013) Biological nitrogen removal from landfill leachate using anaerobic-aerobic process: Denitritation via organics in raw leachate and intracellular storage polymers of microorganisms. Bioresource Technology, 128, 401-408.
Zwietering, M. H., I. Jongenburger, F. M. Rombouts & K. Vantriet (1990) MODELING OF THE BACTERIAL-GROWTH CURVE. Applied and Environmental Microbiology, 56, 1875-1881.
行政院中央健康保險署,2016,國內藥物與個人保健用品之使用量資料統計
行政院衛生署中央健保局,2005,健保資料庫之健保給付藥品資料
李茂豪,2013,水域環境中抗藥性微生物的發生與養豬廢水排放相關性的評估,私立東吳大學微生物學系碩士論文
李銘益,2013,二階段厭氧流體化薄膜生物反應槽在自然溫度下處理生活污水效率之研究,國立交通大學環境工程研究所碩士論文
林秀玲,2015,上流式厭氧污泥床結合藻類反應槽處理生活污水之研究,國立中興大學環境工程學系碩士論文
邱懷嫻,2011,養豬廢水處理廠抗生素類新興污染物流佈,國立屏東科技大學環境工程與科學系碩士論文
高雄市環境保護局,2011,社區水污染防治措施及管理計畫
張庭瑋,2011,模擬高級與傳統淨水廠中污染物變化,國立中山大學環境工程研究所碩士論文
黃俊嘉,2013,回分式好氧污泥床處理工業區廢水之動力學及溫度效應,崑山科技大學環境工程系碩士論文
歐陽嶠暉,「下水道工程學」,長松出版社,增訂版,第45-56頁,台北(1992)
蔡承佑,2014,利用AFBR-AFMBR系統處理台灣低濃度生活污水之可行性評估,國立交通大學環境工程研究所碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code