Responsive image
博碩士論文 etd-0709118-102041 詳細資訊
Title page for etd-0709118-102041
論文名稱
Title
肝癌衍生生長因子訊息傳遞路徑在幽門螺旋桿菌誘發之胃上皮組織發炎的角色
Role of Hepatoma-Derived Growth Factor Signaling on Helicobacter Pylori-Induced Gastric Epithelial Inflammation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-09
關鍵字
Keywords
肝癌衍生生長因子、胃幽門螺旋桿菌、胃炎
Gastritis, Hepatoma derived growth factor (HDGF), Helicobacter pylori
統計
Statistics
本論文已被瀏覽 5608 次,被下載 0
The thesis/dissertation has been browsed 5608 times, has been downloaded 0 times.
中文摘要
胃癌是發生在胃部黏膜的癌症,為全世界中癌症死亡原因之一。而有研究發現,胃幽門螺旋桿菌 (Helicobacter pylori, H. pylori) 為最主要影響胃癌的關鍵因素,當受到感染後,會造成慢性胃發炎,導致癌化的發生,形成胃癌。根據許多研究指出,胃上皮發炎和癌化過程中,H. pylori感染扮演重要的角色。 肝癌衍生生長因子(Hepatoma-Derived Growth Factor;HDGF) 是近期一種被關注的致癌因子,其在許多癌症惡化過程中皆有參與。過去研究指出,過度表現HDGF會促使胃癌細胞增生,並造成不良之預後。HDGF表現量增加亦與胃癌晚期患者存活率降低以及淋巴轉移相關。本研究旨在確定HDGF缺乏對H. pylori發病機制的影響以及HDGF調節H. pylori誘導促炎反應的機制。H. pylori感染刺激胃上皮細胞中HDGF的上調和分泌,並且HDGF缺乏消除了H. pylori促進胃中的炎症反應。HDGF可能是H. pylori誘導的胃炎甚至癌發生的病理因素。
Abstract
Gastric carcinoma occurs in the mucosa of the stomach and it is one of the main causes of cancer death worldwide. Helicobacter pylori (H. pylori) was a leading factor in the occurrence of gastric cancer. When gastric was infected, it would cause chronic stomach inflammation and finally resulted in the occurrence of cancerous, the formation of gastric cancer. According to many studies, they indicated that H. pylori infection played a key role in the process of gastric epithelial inflammation and carcinogenesis. Hepatoma-derived growth factor (HDGF) is a novel growth factor involved in malignant progression of various types of cancer. Previous studies indicated that HDGF overexpression would cause the proliferation of gastric cancer cells. Moreover, HDGF upregulation was also correlated with the shorter survival in late-stage gastric cancer patients as well as the lymphe node metastasis. This study aimed to identify the consequences of HDGF deficiency on H. pylori pathogenesis and the mechanism by which HDGF modulates H. pylori -induced proinflammatory response. H. pylori infection stimulates the upregulation and secretion of HDGF in gastric epithelial cells, and HDGF deficiency abrogates H. pylori-promoted inflammatory response in stomach. HDGF is maybe a pathological factor in H. pylori-induced gastritis, even carcinogenesis.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
Figures and Legends Index vi
Abbreviation viii
Introduction 1
Specific Aims 10
Materials and methods 11
Discussion 28
Figures and legends 32
Appendix 63
Reference 68
參考文獻 References
1 Polgar, D. et al. Potential mechanisms of benzamide riboside mediated cell death. Curr Med Chem 9, 765-771 (2002).
2 Nakamura, H. et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-25149 (1994).
3 Dietz, F. et al. The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366, 491-500, doi:10.1042/BJ20011811 (2002).
4 Kishima, Y. et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322, doi:10.1074/jbc.M111122200 (2002).
5 Chen, S. C. et al. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 6, 16253-16270, doi:10.18632/oncotarget.3608 (2015).
6 Shetty, A. et al. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2. Urol Oncol 34, 483 e481-483 e488, doi:10.1016/j.urolonc.2016.05.027 (2016).
7 Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12, 715-723, doi:10.1038/ni.2060 (2011).
8 Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21, 677-687, doi:10.1038/nm.3893 (2015).
9 Zhang, J. et al. Identification of CD44 as a downstream target of noncanonical NF-kappaB pathway activated by human T-cell leukemia virus type 1-encoded Tax protein. Virology 413, 244-252, doi:10.1016/j.virol.2011.02.021 (2011).
10 Yamamoto, S. et al. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 12, 117-122, doi:10.1158/1078-0432.CCR-05-1347 (2006).
11 Ang, T. L. & Fock, K. M. Clinical epidemiology of gastric cancer. Singapore Med J 55, 621-628 (2014).
12 Leung, W. K. et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol 9, 279-287, doi:10.1016/S1470-2045(08)70072-X (2008).
13 Alberts, S. R., Cervantes, A. & van de Velde, C. J. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 14 Suppl 2, ii31-36 (2003).
14 Crabtree, J. E. Gastric mucosal inflammatory responses to Helicobacter pylori. Aliment Pharmacol Ther 10 Suppl 1, 29-37 (1996).
15 Toller, I. M., Hitzler, I., Sayi, A. & Mueller, A. Prostaglandin E2 prevents Helicobacter-induced gastric preneoplasia and facilitates persistent infection in a mouse model. Gastroenterology 138, 1455-1467, 1467 e1451-1454, doi:10.1053/j.gastro.2009.12.006 (2010).
16 Shibata, J. et al. Regulation of tumour necrosis factor (TNF) induced apoptosis by soluble TNF receptors in Helicobacter pylori infection. Gut 45, 24-31 (1999).
17 Ng, G. Z. et al. The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome. Gut 65, 1087-1099, doi:10.1136/gutjnl-2014-307175 (2016).
18 Wilson, K. T. et al. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111, 1524-1533 (1996).
19 Mooney, C. et al. Neutrophil activation by Helicobacter pylori. Gut 32, 853-857 (1991).
20 Mai, U. E. et al. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism. J Clin Invest 87, 894-900, doi:10.1172/JCI115095 (1991).
21 Yun, C. H. et al. Natural killer cells and Helicobacter pylori infection: bacterial antigens and interleukin-12 act synergistically to induce gamma interferon production. Infect Immun 73, 1482-1490, doi:10.1128/IAI.73.3.1482-1490.2005 (2005).
22 Lamb, A. & Chen, L. F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J Cell Biochem 114, 491-497, doi:10.1002/jcb.24389 (2013).
23 Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15, 306-316, doi:10.1016/j.chom.2014.02.008 (2014).
24 Brandt, S., Kwok, T., Hartig, R., Konig, W. & Backert, S. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102, 9300-9305, doi:10.1073/pnas.0409873102 (2005).
25 Guo, X. L. et al. Association of cyclooxygenase-2 expression with Hp-cagA infection in gastric cancer. World J Gastroenterol 9, 246-249 (2003).
26 Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183, 787-791, doi:10.4049/jimmunol.0901363 (2009).
27 Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426 (2002).
28 Rokkas, T., Filipe, M. I. & Sladen, G. E. Detection of an increased incidence of early gastric cancer in patients with intestinal metaplasia type III who are closely followed up. Gut 32, 1110-1113 (1991).
29 Silberg, D. G. et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122, 689-696 (2002).
30 Barros, R., Freund, J. N., David, L. & Almeida, R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 18, 555-563, doi:10.1016/j.molmed.2012.07.006 (2012).
31 Sigal, M. et al. Helicobacter pylori Activates and Expands Lgr5(+) Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology 148, 1392-1404 e1321, doi:10.1053/j.gastro.2015.02.049 (2015).
32 Sigal, M. et al. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451-455, doi:10.1038/nature23642 (2017).
33 Everhart, J. E. Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol Clin North Am 29, 559-578 (2000).
34 Warren, J. R. & Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273-1275 (1983).
35 Correa, P. & Piazuelo, M. B. Helicobacter pylori Infection and Gastric Adenocarcinoma. US Gastroenterol Hepatol Rev 7, 59-64 (2011).
36 Every, A. L. Key host-pathogen interactions for designing novel interventions against Helicobacter pylori. Trends Microbiol 21, 253-259, doi:10.1016/j.tim.2013.02.007 (2013).
37 Wroblewski, L. E., Peek, R. M., Jr. & Wilson, K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23, 713-739, doi:10.1128/CMR.00011-10 (2010).
38 Goodwin, C. S. & Armstrong, J. A. Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9, 1-13 (1990).
39 Piotrowski, J., Skrodzka, D., Slomiany, A. & Slomiany, B. L. Helicobacter pylori lipopolysaccharide induces gastric epithelial cells apoptosis. Biochem Mol Biol Int 40, 597-602 (1996).
40 Phadnis, S. H. et al. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun 64, 905-912 (1996).
41 Marshall, B. J., Barrett, L. J., Prakash, C., McCallum, R. W. & Guerrant, R. L. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 99, 697-702 (1990).
42 Kusters, J. G., van Vliet, A. H. & Kuipers, E. J. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19, 449-490, doi:10.1128/CMR.00054-05 (2006).
43 Crabtree, J. E. et al. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338, 332-335 (1991).
44 Weber, G. Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics. Proc Natl Acad Sci U S A 93, 7452-7453 (1996).
45 Hatakeyama, M. & Higashi, H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 96, 835-843, doi:10.1111/j.1349-7006.2005.00130.x (2005).
46 Wang, A. et al. Loss of NHE8 expression impairs intestinal mucosal integrity. Am J Physiol Gastrointest Liver Physiol 309, G855-864, doi:10.1152/ajpgi.00278.2015 (2015).
47 Rock, K. L. & Kono, H. The inflammatory response to cell death. Annu Rev Pathol 3, 99-126, doi:10.1146/annurev.pathmechdis.3.121806.151456 (2008).
48 Jeong, M. et al. Dietary prevention of Helicobacter pylori-associated gastric cancer with kimchi. Oncotarget 6, 29513-29526, doi:10.18632/oncotarget.4897 (2015).
49 Ray, A. et al. Gut Microbial Dysbiosis Due to Helicobacter Drives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages. J Immunol 195, 3071-3085, doi:10.4049/jimmunol.1500153 (2015).
50 Schmekel, B. et al. Myeloperoxidase in human lung lavage. I. A marker of local neutrophil activity. Inflammation 14, 447-454 (1990).
51 Metzler, K. D. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117, 953-959, doi:10.1182/blood-2010-06-290171 (2011).
52 Lau, D. et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A 102, 431-436, doi:10.1073/pnas.0405193102 (2005).
53 Gomez-Mejiba, S. E. et al. Myeloperoxidase-induced genomic DNA-centered radicals. J Biol Chem 285, 20062-20071, doi:10.1074/jbc.M109.086579 (2010).
54 Sun, A. M. et al. Hepatocarcinoma cell-derived hepatoma-derived growth factor (HDGF) induces regulatory T cells. Cytokine 72, 31-35, doi:10.1016/j.cyto.2014.12.001 (2015).
55 Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31, 986-1000, doi:10.1161/ATVBAHA.110.207449 (2011).
56 Chang, Y. J. et al. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 66, 1465-1477, doi:10.1124/mol.104.005199 (2004).
57 Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2, doi:10.1038/sigtrans.2017.23 (2017).
58 Lo, J. et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology 62, 534-545, doi:10.1002/hep.27859 (2015).
59 Gray, B. M., Fontaine, C. A., Poe, S. A. & Eaton, K. A. Complex T cell interactions contribute to Helicobacter pylori gastritis in mice. Infect Immun 81, 740-752, doi:10.1128/IAI.01269-12 (2013).
60 Eaton, K. A., Mefford, M. & Thevenot, T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J Immunol 166, 7456-7461 (2001).
61 Sozzi, M. et al. Atrophic gastritis and intestinal metaplasia in Helicobacter pylori infection: the role of CagA status. Am J Gastroenterol 93, 375-379, doi:10.1111/j.1572-0241.1998.00375.x (1998).
62 Kao, J. Y. et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology 138, 1046-1054, doi:10.1053/j.gastro.2009.11.043 (2010).
63 Zhang, X. Y., Zhang, P. Y. & Aboul-Soud, M. A. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol Lett 13, 543-548, doi:10.3892/ol.2016.5506 (2017).
64 Khan, S., Karim, A. & Iqbal, S. Helicobacter urease: niche construction at the single molecule level. Journal of biosciences 34, 503 (2009).
65 Mobley, H. L. The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther 10 Suppl 1, 57-64 (1996).
66 Morales-Guerrero, S. E., Mucito-Varela, E., Aguilar-Gutiérrez, G. R., Lopez-Vidal, Y. & Castillo-Rojas, G. in Current Topics in Gastritis-2012 (InTech, 2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.136.154.103
論文開放下載的時間是 校外不公開

Your IP address is 3.136.154.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code